ALGANT Summer School on Monodromy

June 23-28, 2014 - Dobbiaco - Italy

Nearby cycles and monodromy in étale cohomology

Luc Illusie

Université Paris-Sud

Plan

1. Discs and traits
2. The functors $R \Psi$ and $R \Phi$
3. General theorems on nearby and vanishing cycles
4. Examples
5. Grothendieck's local monodromy theorem
6. The ℓ-adic weight spectral sequence
7. Further developments

1. Discs and traits

local ring A : henselian : any finite A-algebra $B=$ product of local rings
\Leftrightarrow any strictly essentially étale local A-algebra is A-isomorphic to A (EGA IV 18.5.11, 18.6.6)

A strictly henselian : any essentially étale local A-algebra is
A-isomorphic to A (\Leftrightarrow henselian + residue field separably closed)
$\operatorname{Spec} A$ strictly local: A strictly henselian
complete noetherian local \Rightarrow henselian
trait: $S=\operatorname{Spec} R, R$ a dvr (discrete valuation ring)
closed point : $s=\operatorname{Spec} k, k=R / \mathfrak{m}$
generic point $\eta=\operatorname{Spec} K, K=\operatorname{Frac} R$
S henselian, L / K finite separable $\Rightarrow O_{L}=$ product of finite local R-algebras

Analogies

Disc
open disc
$D=\{|z|<1\}$
$\{0\} \in D$
$D^{*}=D-\{0\}$
coordinate z in D
$\widetilde{D^{*}}=\{\operatorname{Im} \tau>0\} \rightarrow D^{*}$
universal cover $\tau \mapsto \exp (2 \pi i \tau)$
$\pi_{1}\left(D^{*}, t\right)=\operatorname{Aut}\left(\widetilde{D^{*}}\right)=\mathbf{Z}$

Trait
strictly local trait $S=\operatorname{Spec} R$ $s \in S$ $\eta \in S$ uniformizing parameter $\pi \in R$

$$
\bar{\eta}=\operatorname{Spec} \bar{K} \rightarrow \eta=\operatorname{Spec} K
$$

$\bar{K}=$ separable closure of K
inertia group $\pi_{1}(\bar{\eta} / \eta)=\operatorname{Gal}(\bar{K} / K)$
last analogy OK if $\operatorname{char}(k)=0$, too coarse if $\operatorname{char}(k)=p>0$

Stucture of inertia

$$
\begin{gathered}
I=\operatorname{Gal}(\bar{K} / K) \\
1 \rightarrow P \rightarrow I \xrightarrow{t} \widehat{\mathbf{Z}}^{\prime}(1) \rightarrow 1 \\
\widehat{\mathbf{Z}}^{\prime}(1)=\operatorname{Gal}\left(\eta_{t} / \eta\right)=\lim _{(n, p)=1}(\mathbf{Z} / n \mathbf{Z})(1)(k)=\prod_{\ell \neq p} \mathbf{Z}_{\ell}(1)(k) \\
\eta_{t}=\operatorname{Spec} K_{t}, \quad K_{t}=\cup_{(n, p)=1} K\left(\pi^{1 / n}\right), \quad p=\operatorname{char} \cdot \exp (k)
\end{gathered}
$$

(maximal tamely ramified extension of K in \bar{K})
$t: I \rightarrow \widehat{\mathbf{Z}}^{\prime}(1):$ tame character :

$$
t(g)=g \pi^{\prime} / \pi^{\prime} \in \mu_{n}(k), \quad \pi^{\prime n}=\pi
$$

$$
1 \rightarrow P \rightarrow I \xrightarrow{t} \widehat{\mathbf{Z}}^{\prime}(1) \rightarrow 1
$$

Abhyankar's lemma $\Rightarrow P$: a pro-p-group : wild inertia
(well understood if k alg. closed ; if not, complicated ramification (work in progress (Abbes, T. Saito, ...))

Arithmetic case

R henselian, k, K
\bar{k} : separable closure of $k ; R^{\prime}=R^{s h}$ associated strict henselization, $R^{\prime} / \mathfrak{m}^{\prime}=\bar{k}$,
$K^{\prime}=\operatorname{Frac} R^{\prime}=K_{u r}$: maximal unramified extension of K

$$
K \rightarrow K_{u r} \rightarrow\left(K_{u r}\right)_{t} \rightarrow \bar{K}
$$

($\bar{K}=$ separable closure of $K_{u r}$)
$G_{K}=\operatorname{Gal}(\bar{K} / K), G_{k}=\operatorname{Gal}\left(K_{u r} / K\right)=\operatorname{Gal}(\bar{k} / k), I=\operatorname{Gal}\left(K / K^{\prime}\right)$

$I_{t}=\operatorname{Gal}\left(K_{t}^{\prime} / K^{\prime}\right)$
G_{k} acts on I_{t} by conjugation, and isomorphism induced by tame character

$$
t: I_{t} \simeq \hat{\mathbf{Z}}^{\prime}(1)
$$

is G_{k}-equivariant : for $\sigma \in I_{t}, g \in G_{k}$,

$$
t\left(g \sigma g^{-1}\right)=t(\sigma)^{\chi(g)}
$$

where $\chi: G_{k} \rightarrow \widehat{\mathbf{Z}}^{*}=$ cyclotomic character

Application: Grothendieck's local monodromy lemma

Lemma
Assume no finite extension of k contains all ℓ^{n}-th roots of 1 for $n \geq 1$. Let

$$
\rho: G_{K} \rightarrow \mathrm{GL}(V)
$$

be a continuous representation, $V=$ finite dimensional $\mathbf{Q}_{\ell \text {-vector }}$ space.
Then there exists an open subgroup $I^{\prime} \subset I$ such that $\rho(\sigma)$ is unipotent for all $\sigma \in I^{\prime}$.

Proof

Up to finite extension of K, WMA
$(*) \quad \operatorname{Im}(\rho) \subset 1+\ell^{2} M_{n}\left(\mathbf{Z}_{\ell}\right)$

Will show : $\rho(\sigma)$ unipotent for all $\sigma \in I$
$\left(^{*}\right) \Rightarrow \operatorname{Im}(\rho)=$ pro- ℓ-group
$\Rightarrow \rho$ factors through $\operatorname{Gal}\left(K_{\ell} / K\right)$, where $K_{\ell}=\cup K_{u r}\left(\pi^{1 / \ell^{n}}\right)$.

Let $\sigma \in I_{\ell}=\operatorname{Gal}\left(K_{\ell} / K_{u r}\right)=\mathbf{Z}_{\ell}(1)$.
Recall : for all $g \in G_{k}$,
$(* *)$

$$
g \sigma g^{-1}=\sigma^{\chi(g)}
$$

($\chi: G_{k} \rightarrow \mathbf{Z}_{\ell}^{*}=$ cyclotomic character $)$
$(* *) \quad g \sigma g^{-1}=\sigma^{\chi(g)}$
Let $x:=\rho(\sigma)$,
$X=\log x=\sum_{n \geq 1}(-1)^{n-1}(x-1)^{n} / n \in \ell^{2} M_{n}\left(\mathbf{Z}_{\ell}\right)$
$\left({ }^{* *}\right) \Rightarrow$

$$
g X g^{-1}=\chi(g) X
$$

\Rightarrow for all $i \geq 1$

$$
c_{i}(X)=\chi(g)^{i} c_{i}(X)
$$

where

$$
\operatorname{det}(X . I d-t)=X^{n}-c_{1}(X) X^{n-1}+\cdots+(-1)^{n} c_{n}(X)
$$

Hypothesis on $k \Rightarrow \chi\left(G_{k}\right)=\operatorname{Gal}\left(k\left(\mu_{\ell \infty}\right) / k\right) \subset \mathbf{Z}_{\ell}^{*}$ infinite
\Rightarrow there exists $g \in G_{k}$ s. t. $\chi(g)$ is of infinite order
since

$$
c_{i}(X)=\chi(g)^{i} c_{i}(X)
$$

get $c_{i}(X)=0 \forall i \geq 1$
$\Rightarrow X$ nilpotent
$\Rightarrow($ as $\ell \geq 2), x=\exp (X)(\ell \geq 2)$ unipotent. Qed.

Compare with Grothendieck's proof of ℓ-adic Chern classes of linear representations of discrete groups being torsion
(Th. 4.8 in [Classes de Chern et représentations ℓ-adiques des groupes discrets, Dix exposés sur la cohomologie des schémas, North Holland Pub. Co., 1968])

Theorem
(Grothendieck) G a discrete group of finite type, k separably closed, $\rho: G \rightarrow \operatorname{GL}(E), E / k$ finite dimensional, $\ell \neq \operatorname{char}(k)$. Then

$$
c_{i}(\rho) \in H^{2 i}\left(G, \mathbf{Z}_{\ell}(k)(i)\right)
$$

is torsion for all $i \geq 1$.

2. The functors $R \psi$ and $R \Phi$

$S=$ henselian trait
$\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}$ (or finite over it) (or ℓ-adic variants)
X / S

$$
X_{\bar{s}} \stackrel{\bar{i}}{\rightarrow} X_{S_{(\bar{s})}} \stackrel{\bar{j}}{\leftarrow} X_{\bar{\eta}}
$$

over

$$
\begin{gathered}
F \in D^{+}\left(X_{\eta}, \Lambda\right) \\
X_{\bar{s}} \stackrel{\bar{i}}{\rightarrow} X_{S_{(\bar{s})}} \stackrel{\bar{j}}{\leftarrow} X_{\bar{\eta}} \\
R \Psi F:=\bar{i}^{*} R \bar{j}_{*}\left(F \mid X_{\bar{\eta}}\right) \in D^{+}\left(X_{\bar{s}}, \Lambda\right)
\end{gathered}
$$

nearby cycles complex (cf. [SGA 7 I, 2.2])
(Trivial) example : $X=S, R \Psi F=R \Gamma\left(S_{(\bar{s})}, R \bar{j}_{*} F_{\bar{\eta}}\right)=F_{\bar{\eta}}$

Alternate definition

(cf. [SGA 7 XIII 1.3])

$\left(\widetilde{S}=\right.$ integral closure of $S_{(\bar{s})}$ in $\bar{\eta}, \widetilde{s} \rightarrow \bar{s}$ radicial)

$$
R \Psi F=\widetilde{i^{*}} R \widetilde{j_{*}}\left(F \mid X_{\bar{\eta}}\right)
$$

(use pbc and $\left(X_{\bar{s}}\right)_{\text {et }}=\left(X_{\widetilde{s}}\right)_{\text {et }}$)

Stalks

$\bar{x} \rightarrow X_{\bar{s}}$ geometric point
Milnor ball $X_{(\bar{x})}$ (strict localization at \bar{x})
Milnor fiber $\left(X_{(\bar{x})}\right)_{\bar{\eta}}$

$$
(R \Psi F)_{\bar{x}}=R \Gamma\left(\left(X_{(\bar{x})}\right)_{\bar{\eta}}, F\right)
$$

Galois action

$G=\operatorname{Gal}(\bar{\eta} / \eta)$ acts on $R \Psi F$:
$R \Psi F$ underlies a complex of sheaves (of Λ-modules) on $X_{\bar{s}}$ with a continuous action of G
compatible with action of G on $X_{\bar{s}}$ via $G \rightarrow \operatorname{Gal}(\bar{s} / s)$
Define
$X_{s} \overleftarrow{\times}_{s} \eta:=$ topos of G-sheaves on $X_{\bar{s}}$ (Deligne's oriented product)
Then :

$$
R \Psi F \in D^{+}\left(X_{s} \overleftarrow{\times}_{s} \eta, \Lambda\right)
$$

In particular:

- $R^{q} \Psi F$ is a G-sheaf on $X_{\bar{s}}$
- any $g \in G$ defines an automorphism

$$
g^{*} \in \operatorname{Aut}(R \Psi F)
$$

of the underlying object $R \Psi F$ of $D^{+}\left(X_{\bar{S}}, \Lambda\right)$

Vanishing cycles

For $K \in D^{+}(X, \Lambda)$ (not in $D^{+}\left(X_{\eta}, \Lambda\right)$, adjunction map defines
G-equivariant triangle (i. e. a triangle of $\left.D^{+}\left(X_{s} \overleftarrow{×}_{S} \eta, \Lambda\right)\right)$

$$
K \mid X_{\bar{s}} \rightarrow R \Psi\left(K \mid X_{\eta}\right) \rightarrow R \Phi K \rightarrow
$$

$R \Phi K$: vanishing cycles complex
Trivial example (cont'd) $X=S, K \in D^{+}(S, \Lambda)$

$$
K_{\bar{s}} \xrightarrow{\mathrm{sp}} K_{\bar{\eta}} \rightarrow R \Phi K \rightarrow
$$

$\mathrm{sp}=$ specialization map
$(X / S, K)$ locally acyclic at $x \in X_{s} \Leftrightarrow_{\text {def }}(R \Phi K)_{\bar{x}}=0(\bar{x} \rightarrow x$ geometric point)
locally acyclic $\Leftrightarrow_{\text {def }}$ locally acyclic at each point
$\Leftrightarrow K_{\bar{x}} \xrightarrow{\sim} R \Gamma\left(\left(X_{(\bar{x})}\right)_{\bar{\eta}}, K\right)$
X / S smooth, ℓ invertible on S, K a lisse sheaf
$\Rightarrow(X / S, K)$ locally acyclic (Artin's local acyclicity theorem)
But if $\ell=p, p=\operatorname{char}(k), X / S$ smooth, $\Lambda=\mathbf{Z} / p^{n} \mathbf{Z}$, $R \Phi K$ highly non-trivial (studied by Bloch-Kato, Tsuji, ...)

Invariants under inertia, tame nearby cycles

$F \in D^{+}\left(X_{\eta}, \Lambda\right)$

$$
\bar{i}^{*} R j_{\mathrm{ur} *}\left(F \mid X_{\mathrm{ur}}\right)=R \Gamma(I, R \Psi F)
$$

$$
1 \rightarrow P \rightarrow I \xrightarrow{t} I_{\mathrm{t}} \rightarrow 1
$$

P a pro- p-group (wild inertia), $p=\operatorname{char} . \exp (k), t=$ tame character,

$$
I_{\mathrm{t}}=\prod_{\ell^{\prime} \neq p} \mathbf{Z}_{\ell^{\prime}}(1)
$$

$$
1 \rightarrow P \rightarrow I \xrightarrow{t} I_{\mathrm{t}} \rightarrow 1
$$

Tame nearby cycles

$$
R \Psi_{\mathrm{t}} F:=R \Gamma(P, R \Psi F)=\bar{i}^{*} R j_{\mathrm{t}_{*}}\left(F \mid X_{\eta_{\mathrm{t}}}\right)
$$

$R \Psi F$ tame $\Leftrightarrow_{\text {def }} R \Psi_{\mathrm{t}} F \xrightarrow{\sim} R \Psi F\left(I\right.$ acts through $\left.I_{\mathrm{t}}\right)$
Note : $M \mapsto \Gamma(P, M)=M^{P}$ exact on Λ-modules if $\ell \neq p$
3. General theorems on nearby and vanishing cycles
3.1. Functoriality

(1) Push-out
bc map (for $R h_{*}$) gives
$R \Psi R h_{\eta *} F \rightarrow R h_{\bar{s} *} R \Psi F$
isomorphism if h proper (pbc)

In particular $(Y=S)$, if X / S proper, get G-equivariant isomorphism

$$
R \Gamma\left(X_{\bar{\eta}}, F\right) \xrightarrow{\sim} R \Gamma\left(X_{\bar{s}}, R \Psi F\right)
$$

and, for $K \in D^{+}(X, \Lambda)$, long exact sequence

$$
\cdots \rightarrow H^{i}\left(X_{\bar{s}}, K \mid X_{\bar{s}}\right) \xrightarrow{\mathrm{sp}} H^{i}\left(X_{\bar{\eta}}, K \mid X_{\bar{\eta}}\right) \rightarrow H^{i}\left(X_{\bar{s}}, R \Phi K\right) \rightarrow \cdots
$$

sp : $H^{i}\left(X_{\bar{s}}, K \mid X_{\bar{s}}\right) \stackrel{\sim}{\leftarrow} H^{i}\left(X_{S_{(\bar{s})}}, K\right) \rightarrow H^{i}\left(X_{\bar{\eta}}, K \mid X_{\bar{\eta}}\right)$
called specialization map
$R \Gamma\left(X_{\bar{s}}, R \Phi K\right)$ measures defect of sp being an isomorphism
(X, K) locally acyclic outside closed $\Sigma \subset X_{s}$
\Rightarrow defect concentrated on Σ
X / S proper and smooth, $\ell \neq p \Rightarrow \mathrm{sp}: R \Gamma\left(X_{s}, \Lambda\right) \xrightarrow{\sim} R \Gamma\left(X_{\bar{\eta}}, \Lambda\right)$
NB. Fails for $\ell=p$ (first case: jump of p-rank of elliptic curve)
(2) Pull-back

$$
\begin{aligned}
& X_{\bar{s}} \xrightarrow{\bar{i}} X_{S_{(\bar{s})}}<{ }^{\bar{j}} X_{\bar{\eta}}
\end{aligned}
$$

bc map (for $R \bar{j}_{*}$) gives

$$
h_{\bar{s}}^{*} R \Psi F \rightarrow R \Psi h_{\eta}^{*} F
$$

isomorphism if ℓ invertible on S and h smooth (smooth bc)
(fails for h smooth but $\ell=p$)

From now on we assume ℓ invertible on S

3.2. Base change

cartesian squares, with $S^{\prime} \rightarrow S$ dominant map of henselian traits, $F \in D^{+}\left(X_{\eta}, \Lambda\right)$. Then, bc map

$$
\left(R \Psi_{X / S} F\right) \mid X_{\bar{s}^{\prime}}^{\prime} \rightarrow R \Psi_{X^{\prime} / S^{\prime}}\left(F \mid X_{\eta^{\prime}}^{\prime}\right)
$$

is an isomorphism (Deligne, SGA $41 / 2$, Th. finitude 3.7)
(trivial if $S^{\prime}=$ normalization of S in finite extension of $k(\eta)$ contained in $k(\bar{\eta})$)

3.3. Finiteness

$D_{c}^{+}(T, \Lambda):=\left\{K \in D^{+}(T, \Lambda) \mid \mathcal{H}^{q}(K)\right.$ constructible $\left.\forall q\right\}$ (ditto for D_{c}^{b})
Assume X / S of finite type. Then :

$$
R \Psi: D_{c}^{+}\left(X_{\eta}, \Lambda\right) \rightarrow D_{c}^{+}\left(X_{\bar{s}}, \Lambda\right)
$$

(Deligne, SGA 4 1/2 Th. finitude, 3.2)
Moreover, affine Lefschetz (Artin) (SGA 4 XIV) implies :

$$
R^{q} \Psi F=0
$$

for $q>\operatorname{dim}\left(X_{\eta}\right)$
and all sheaves of Λ-modules F on X_{η} (SGA 7 I 4.2)

In particular

$$
R \Psi: D_{c}^{b}\left(X_{\eta}, \Lambda\right) \rightarrow D_{c}^{b}\left(X_{\bar{s}}, \Lambda\right)
$$

and

$$
R \Psi: D_{c t f}\left(X_{\eta}, \Lambda\right) \rightarrow D_{c t f}\left(X_{\bar{s}}, \Lambda\right)
$$

where

$$
D_{c t f}(T, \Lambda)=\left\{K \in D_{c}^{b}(T, \Lambda) \mid K \text { of finite tor-dimension }\right\}
$$

($D_{c t f}$ important for ℓ-adic formalism :
roughly, $\left.D_{c}^{b}\left(T, \mathbf{Z}_{\ell}\right)=2-\lim _{\leftarrow} D_{c t f}\left(T, \mathbf{Z} / \ell^{n} \mathbf{Z}\right)\right)$

3.4. Duality and perversity

Recall biduality: for T regular noetherian of dimension 0 or 1 , and $a: Z \rightarrow T$,
$K_{Z}:=R a!\Lambda_{T}$ is dualizing,
i. e. $D_{Z}:=R \mathcal{H} o m\left(-, K_{Z}\right)$ sends D_{c}^{b} to D_{c}^{b} and $D_{Z} D_{Z}=I d$ (Deligne, SGA $41 / 2$, Th. finitude, 4.3)

Assume $f: X \rightarrow S$ separated and of finite type.
Theorem (Gabber, [I] 4.2) For $F \in D_{c}^{b}\left(X_{\eta}, \Lambda\right)$, have canonical isomorphism of $D_{c}^{b}\left(X_{s} \overleftarrow{\times}_{s} \eta, \Lambda\right)$ (i. e. " G-equivariant in $D_{c}^{b}\left(X_{\bar{s}}, \Lambda\right)$ ")

$$
R \Psi D_{X_{\eta}} F \xrightarrow{\sim} D_{X_{\bar{s}}} R \Psi F
$$

$\mathrm{I}=\mathrm{L} . \mathrm{I} .$, Autour du théorème de monodromie locale, in Astérisque 223
$(*)$
$R \Psi D_{X_{\eta}} F \xrightarrow{\sim} D_{X_{\bar{s}}} R \Psi F$
Corollary 1

$$
R \Psi: \operatorname{Per}\left(X_{\eta}, \Lambda\right) \rightarrow \operatorname{Per}\left(X_{\bar{s}}, \Lambda\right)
$$

where $\operatorname{Per}\left(-,^{\sim}\right)=$ full subcategory of $D_{c}^{b}(-, \Lambda)$ consisting of perverse sheaves,

Here $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}$, or finite extension of \mathbf{Q}_{ℓ}, or $\overline{\mathbf{Q}}_{\ell}$ (complications for \mathbf{Z}_{ℓ}-coefficients)

Proof of corollary 1: $R \Psi$ right t-exact ([BBD],4.4.2) (i. e. preserves ${ }^{p} D^{\leq 0}$);
$\left(^{*}\right) \Rightarrow R \Psi$ left t-exact, hence t-exact

Recall : T separated, finite over a field k, ℓ invertible in k, then, for $K \in D_{c}^{b}(T, \Lambda)$

$$
\begin{aligned}
& K \in{ }^{p} D^{\leq 0} \Leftrightarrow \mathcal{H}^{q} i_{x}^{*} K=0 \forall q>-\operatorname{dim}(x) \\
& K \in{ }^{p} D^{\geq 0} \Leftrightarrow \mathcal{H}^{q} i_{x}^{!} K=0 \forall q<-\operatorname{dim}(x) \\
& \operatorname{Per}(T, \Lambda)={ }^{p} D^{\leq 0}(T, \Lambda) \cap{ }^{p} D^{\geq 0}(T, \Lambda)
\end{aligned}
$$

right t-exact : sends ${ }^{p} D^{\leq 0}$ to ${ }^{p} D \leq 0$
left t-exact: sends ${ }^{p} D^{\geq 0}$ to ${ }^{p} D^{\geq 0}$
t-exact : both left and right t-exact (hence sends Per to Per)

Recall triangle defining vanishing cycles :

$$
K \mid X_{\bar{s}} \rightarrow R \Psi\left(K \mid X_{\eta}\right) \rightarrow R \Phi K \rightarrow
$$

Corollary 2 (Gabber [I] 4.6)

$$
K \in \operatorname{Per}(X, \Lambda) \Rightarrow R \Phi K[-1] \in \operatorname{Per}\left(X_{\bar{s}}, \Lambda\right)
$$

$X / S, S$ a trait, not a field, t-structure on $D^{b}(X, \Lambda)$ defined by :

$$
K \in{ }^{p} D^{\leq 0}(X, \Lambda) \Leftrightarrow j^{*} K \in{ }^{p} D^{\leq-1}\left(X_{\eta}, \Lambda\right) \text { and } i^{*} K \in{ }^{p} D^{\leq 0}\left(X_{s}, \Lambda\right)
$$

$$
K \in{ }^{p} D^{\geq 0}(X, \Lambda) \Leftrightarrow j^{*} K \in{ }^{p} D^{\geq-1}\left(X_{\eta}, \Lambda\right) \text { and } i^{*} K \in{ }^{p} D^{\geq 0}\left(X_{s}, \Lambda\right)
$$

3.5. Künneth

X_{i} / S finite type $(\mathrm{i}=1,2), X:=X_{1} \times{ }_{S} X_{2}, F_{i} \in D_{c t f}\left(\left(X_{i}\right)_{\eta}, \Lambda\right)$
$F=F_{1} \boxtimes^{L} F_{2}:=\operatorname{pr}_{1}^{*} F_{1} \otimes^{L} \operatorname{pr}_{2}^{*} F_{2}$.

Theorem (Gabber, [I] 4.7) : The Künneth map

$$
R \Psi_{X_{1} / S} F_{1} \boxtimes^{L} R \Psi_{X_{2} / S} F_{2} \rightarrow R \Psi_{X / S} F
$$

is an isomorphism (of $D\left(X_{s} \overleftarrow{\times} s \eta, \Lambda\right)$). (This is not formal.)

Indications on proofs of 3.2 to 3.5

- Deligne's method (SGA $41 / 2$, Th. finitude) : use induction on dimension, cut out by pencils, concentrate the defect on a finite number of closed points, conclude by a global argument
- alternate method : use dévissage and de Jong's alterations to reduce to the semistable reduction case, treated by direct calculation (see § 4)

3.6. Comparison with complex nearby cycles

 Recall : X / C loc. finite type \mapsto analytic space $X_{c l}(=X(\mathrm{C})$, classical topology : usual, or local isomorphisms)étale map $X \rightarrow Y$ gives local isomorphism $X_{c l} \rightarrow Y_{c l}$, hence we have a canonical map

$$
\varepsilon: X_{c l} \rightarrow X_{e t}
$$

$\left(\varepsilon^{*}(U)=U_{c l}\right)$
$\Lambda=\mathbf{Z} / N \mathbf{Z}$; for $F \in D^{+}\left(X_{e t}, \Lambda\right)$, get a comparison map
(*)

$$
R \Gamma\left(X_{e t}, F\right) \rightarrow R \Gamma\left(X_{c l}, \varepsilon^{*} F\right)
$$

Theorem
(Artin) For X / C finite type and $F \in D_{c}^{+}\left(X_{e t}, \Lambda\right)$ (i. e. $\mathcal{H}^{q} F$ constructible for all q), (*) = isomorphism

$$
\varepsilon: X_{c l} \rightarrow X_{e t}
$$

$(*)$

$$
R \Gamma\left(X_{e t}, F\right) \xrightarrow{\sim} R \Gamma\left(X_{c l}, \varepsilon^{*} F\right)
$$

Generalization for $f: X \rightarrow Y$ finite type:

$$
\varepsilon^{*} R f_{e t *} F \xrightarrow{\sim} R f_{c l *}\left(\varepsilon^{*} F\right)
$$

$\left(F \in D_{c}^{+}(X, \Lambda)\right)$

Comparison between $R \Psi_{e t}$ and $R \Psi_{c l}$

Set-up: Y / C smooth connected curve, $0 \in Y(\mathbf{C}), f: X \rightarrow Y$ separated, finite type, $X_{0}=f^{-1}(0)$

- $R \Psi\left(=R \Psi_{e t}\right)$
S : henselization of Y at $0,0 \rightarrow S \leftarrow \eta \leftarrow \bar{\eta}=\underset{\leftarrow}{\lim } \eta\left(t^{1 / n}\right)$

$$
R \Psi: D^{+}\left(X-X_{0}, \Lambda\right) \rightarrow D^{+}\left(X_{0}, \Lambda\right)
$$

+ action of $G=\operatorname{Gal}(\bar{\eta} / \eta)(\xrightarrow{\sim} \widehat{\mathbf{Z}}(1))$ on $R \Psi F$

$$
R \Psi: D^{+}\left(X-X_{0}, \Lambda\right) \rightarrow D^{+}\left(X_{0} \times \eta, \Lambda\right)
$$

$\left(\operatorname{Sh}\left(X_{0} \times \eta, \Lambda\right)=\right.$ sheaves of $\Lambda[G]$-modules on X_{0} $\left(\xrightarrow{\sim}\left(X_{0}\right)_{e t} \times B \widehat{\mathbf{Z}}(1)\right)$

$$
\begin{gathered}
R \Psi K=i^{*} R \bar{j}_{*}\left(K \mid X_{\bar{\eta}}\right), \\
X_{0} \xrightarrow{i} X_{S} \stackrel{\bar{j}}{\leftarrow} X_{\bar{\eta}}
\end{gathered}
$$

- $R \Psi_{c l}$

$$
\{0\} \rightarrow D \leftarrow D^{*} \leftarrow \widetilde{D}^{*}
$$

universal cover of punctured disc D^{*} near 0

$$
\begin{gathered}
\left(X_{0}\right)_{c l} \stackrel{i}{\rightarrow} f_{c l}^{-1}(D) \stackrel{\bar{j}}{\stackrel{ }{c}} f_{c l}^{-1}\left(\widetilde{D}^{*}\right) \\
R \Psi_{c l}: D^{+}\left(\left(X-X_{0}\right)_{c l}, \Lambda\right) \rightarrow D^{+}\left(\left(X_{0}\right)_{c l}, \Lambda\right) \\
R \Psi_{c l}(F)=i^{*} R \bar{j}_{*}\left(F \mid f_{c l}^{-1}\left(\widetilde{D}^{*}\right)\right) \\
+ \text { action of } \pi_{1}\left(D^{*}\right)=\operatorname{Aut}\left(\widetilde{D}^{*} / D\right) \xrightarrow{\sim} \mathbf{Z}
\end{gathered}
$$

$$
R \Psi_{c l}: D^{+}\left(\left(X-X_{0}\right)_{c l}, \Lambda\right) \rightarrow D^{+}\left(\left(X_{0}\right)_{c l} \times B \pi_{1}\left(D^{*}\right), \Lambda\right)
$$

- Comparison map

$$
\varepsilon:\left(X_{0}\right)_{c l} \times B \pi_{1}\left(D^{*}\right) \rightarrow X_{0} \times \eta
$$

$$
\begin{equation*}
\varepsilon^{*} R \Psi K \rightarrow R \Psi_{c l}\left(\varepsilon^{*} K\right) \tag{*}
\end{equation*}
$$

(in $\left.D\left(\left(X_{0}\right)_{c l} \times B \mathbf{Z}, \Lambda\right)\right)$
To define ε, relate \widetilde{D}^{*} and $\bar{\eta}$ as follows :
$k(\bar{\eta})=\left\{\right.$ germs at 0 of holomorphic functions on \widetilde{D}^{*} algebraic over field of functions of $Y\}$
Define $\left(^{*}\right)$ by approximation, writing normalization of S in $\bar{\eta}$ as an inverse limit of affine Y-schemes of finite type, and using previous comparison map for finite type C -schemes details in SGA 7 X XIV

Theorem
For $K \in D_{c}^{+}\left(X-X_{0}, \Lambda\right)$
(*)
$\varepsilon^{*} R \Psi K \rightarrow R \Psi_{c l}\left(\varepsilon^{*} K\right)$
is an isomorphism
In particular :
Corollary

$$
\left(R \Psi_{c l} \mathbf{Z}\right) \otimes \mathbf{Z}_{\ell} \xrightarrow{\sim} R \Psi \mathbf{Z}_{\ell}
$$

4. Examples

Even for $F=\Lambda, R \Psi F$ explicitly calculated in very few cases:

- Semistable reduction (and variants)
- Quadratic singularities

4.1. Semistable reduction

S : strictly local trait, $s \rightarrow S \leftarrow \eta$
X / S semistable reduction $\Leftrightarrow_{\text {def }} X$ flat, ft/S, X_{η} smooth, X regular, and $X_{s} \subset X=$ reduced divisor with normal crossings
\Leftrightarrow étale locally on X, X isomorphic to $S\left[t_{1}, \cdots, t_{n}\right] /\left(t_{1} \cdots t_{r}-\pi\right)$
($\pi=$ uniformizing parameter in $R, S=\operatorname{Spec} R$); $\left.X_{s}=V\left(t_{1} \ldots t_{r}\right) \subset X ; \operatorname{dim} X=n\right)$
strict semistable : $Y:=X_{s}$ is a strict normal crossings divisor : $Y=\sum_{1 \leq i \leq r} Y_{i}, Y_{i}$ regular, irreducible $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}, \ell$ invertible on $S ; R \Psi \Lambda$ given by following th :

Theorem
(1) $R \Psi \Lambda=R \Psi_{\mathrm{t}} \wedge(R \Psi \wedge$ tame)
(2) $R^{0} \Psi \Lambda=\Lambda_{Y}$
(3) $0 \rightarrow \Lambda_{Y} \rightarrow \oplus_{i} \Lambda_{Y_{i}} \rightarrow R^{1} \Psi \Lambda \rightarrow 0$
(4) $\Lambda^{q} R^{1} \Psi \Lambda \xrightarrow{\sim} R^{q} \Psi \Lambda$
(5) $I=\operatorname{Gal}(\bar{\eta} / \eta)$ acts trivially on $R^{q} \Psi \wedge$ for all q, unipotently on $R \Psi \wedge$.

Remarks

- $R \Psi_{\mathrm{t}} \wedge$ calculated by Grothendieck-Deligne (SGA 7 I) assuming Grothendieck's absolute purity conjecture for divisor $Y \subset X$
- tameness and full calculation by Rapoport-Zink (1982)
- general absolute purity conjecture proved by Gabber (1994), new proof in 2005
- generalization of theorem to log smooth case (Nakayama, 1998)
- simplified proof of tameness and purity conjecture (for $Y \subset X$): (I., 2004)
(5) $I=\operatorname{Gal}(\bar{\eta} / \eta)$ acts unipotently on $R \Psi \Lambda$
\Rightarrow existence of monodromy operator

$$
N: R \Psi \wedge \rightarrow R \Psi \wedge(-1)
$$

(in $D(Y, \Lambda)$), satisfying $N^{n+1}=0$, characterized by

$$
\sigma \mid R \Psi \Lambda=\exp \left(N t_{\ell}(\sigma): R \Psi \Lambda \rightarrow R \Psi \Lambda\right)
$$

for $\sigma \in I$, where $t_{\ell}: I \rightarrow \mathbf{Z}_{\ell}(1)=\ell$-component of tame character

- explicit description of N by Rapoport-Zink, using ℓ-adic variant of Steenbrink's double complex, and calculation of monodromy filtration
- Calculation of monodromy filtration and other filtrations associated with N, using perversity of $R \Psi \Lambda[n]$ (T. Saito, 2003), applications to weight spectral sequence

Sketch of proof of (1) : tameness of $R \Psi \wedge$

$Y=X_{s}=\sum Y_{i}$ sncd in X; for $x \rightarrow Y$ geometric pt, define $r(x)$
$=$ number of branches of Y through x,

$$
r(X)=\sup _{X \rightarrow Y} r(x)
$$

$(1 \leq r(X)<+\infty)$
Proof of tameness of $R \Psi \wedge$ by induction on $r(X)$. Assume tameness holds for $r(X) \leq r$ (reduction with at most r branches), wants to prove it for $r(X)=r+1$.
WMA $X=S\left[t_{1}, \cdots, t_{n}\right] /\left(t_{1} \cdots t_{r+1}-\pi\right)$, then (functoriality for smooth maps) WMA

$$
X=S\left[t_{1}, \cdots, t_{r+1}\right] /\left(t_{1} \cdots t_{r+1}-\pi\right) .
$$

Let

$$
0=V\left(t_{1}, \cdots, t_{r+1}\right) \in Y
$$

Induction assumption $\Rightarrow R \Psi \Lambda \mid Y-\{0\}$ tame. Want to show $(R \Psi \Lambda)_{0}$ tame.
Define wild quotient $R \Psi_{w} \Lambda$ by exact triangle

$$
R \Psi_{t} \Lambda \rightarrow R \Psi \Lambda \rightarrow R \Psi_{w} \Lambda \rightarrow
$$

Then

$$
R \Psi_{w} \Lambda=\left(R \Psi_{w} \Lambda\right)_{0}
$$

and want to show $\left(R \Psi_{w} \Lambda\right)_{0}=0$.
Key observation : semistable reduction with n branches can be obtained from smooth map by successive blow up of smooth divisors in special fiber

Let

$$
\begin{gathered}
Z:=S\left[t_{1}, \cdots, t_{r+1}\right] /\left(t_{1} \cdots t_{r}-\pi\right), \\
C:=V\left(t_{r}, t_{r+1}\right) \subset Z
\end{gathered}
$$

and

$$
Z^{\prime}:=\mathrm{Bl}_{C}(Z) \xrightarrow{f} Z \rightarrow S
$$

Then $r(Z)=r$, while $r\left(Z^{\prime} / S\right)=r+1$
more precisely, if $E=$ exceptional divisor, and $x_{0} \in E=$ intersection of strict transforms of $t_{i}=0$ for $i \leq r$, then

$$
r_{Z^{\prime}}(x) \begin{cases}\leq r & \text { if } x \neq x_{0} \\ =r+1 & \text { if } x=x_{0}\end{cases}
$$

\Rightarrow may replace $(X, 0)$ by $\left(Z^{\prime}, x_{0}\right)$
Use functoriality of $R \Psi$ for proper push forward by $f: Z^{\prime} \rightarrow Z$, get $\left(R \Psi_{X, w} \Lambda\right)_{0}=\left(R \Psi_{Z^{\prime}, w} \Lambda\right)_{x_{0}}=\left(R f_{*}\left(R \Psi_{Z^{\prime}, w} \Lambda\right)\right)_{f\left(x_{0}\right)}=\left(R \Psi_{Z, w} \Lambda\right)_{f\left(x_{0}\right)}=0$ by induction assumption

Review of absolute purity theorem

Let

$$
i: Y \rightarrow X
$$

closed immersion of everywhere codimension d, X, Y regular ; $\Lambda=\mathbf{Z} / n \mathbf{Z}, n$ invertible on X. Then : Grothendieck's absolute purity conjecture is Gabber's theorem :
Theorem

$$
R i^{!} \Lambda_{X}=\Lambda_{Y}[-2 d](-d)
$$

i. e.

$$
\mathcal{H}_{Y}^{q}(\Lambda)= \begin{cases}0 & \text { if } q \neq 2 d \\ \Lambda(-d) & \text { if } q=2 d\end{cases}
$$

with (for Y connected)

$$
\Lambda \xrightarrow{\sim} H^{0}\left(Y, \mathcal{H}_{Y}^{2 d}(\Lambda)\right)(d)=H_{Y}^{2 d}(X, \Lambda(d))
$$

given by cohomology class of Y.

Mostly used through
Corollary
$D=\sum_{1 \leq i \leq r}$ sncd in $X, j: U=X-D \rightarrow X$, then

$$
R^{q} j_{*} \Lambda= \begin{cases}\Lambda & \text { if } q=0 \\ \oplus_{1 \leq i \leq r} \Lambda_{D_{i}}(-1) & \text { if } q=1 \\ \Lambda^{q} R^{1} j_{*} \Lambda & \text { if } q \geq 1\end{cases}
$$

with maps $\Lambda_{D_{i}}(-1) \rightarrow R^{1} j_{*} \Lambda$ given by cohomology class of D_{i}

Sketch of proof of (2) - (5)

Calculation on stalks. Replace X by strict localization at $x \in X_{s}$. WMA : $X=S\left\{t_{1}, \cdots, t_{r}\right\} /\left(t_{1} \cdots t_{r}-\pi\right)$.
tameness \Rightarrow

$$
\left(R^{q} \Psi \Lambda\right)_{x}=H^{q}\left(X_{\eta_{t}}, \Lambda\right)
$$

where $\eta_{t}=\lim _{(n, p)=1} \eta\left(\pi^{1 / n}\right)$ (maximal tame extension of η)
Let $U=X_{\eta}=X-Y, Y=X_{s}=V\left(t_{1} \cdots t_{r}\right)$, and
the tame universal cover of U

Let $Z:=\widehat{\mathbf{Z}}^{\prime}(1)=\lim _{(n, p)=1} \mu_{n}(k)$. Have fibrations
(*)

Absolute purity $\Rightarrow\left(^{*}\right)$ cohomologically of the form

$$
1 \rightarrow B Z^{r-1} \rightarrow B Z^{r} \rightarrow B Z \rightarrow 1
$$

corresponding to split exact sequence
$(* *) \quad 0 \rightarrow Z^{r-1} \rightarrow Z^{r} \xrightarrow{\left(m_{1}, \cdots, m_{r}\right) \mapsto \sum m_{i}} Z \rightarrow 0$.

Main point :

$$
H^{q}(\widetilde{U}, \Lambda)= \begin{cases}\Lambda & \text { if } q=0 \\ 0 & \text { if } q \neq 0\end{cases}
$$

(absolute purity \Rightarrow for $q>0$ transition map of inductive system $H^{q}\left(U\left[t_{1}^{1 / n}, \cdots, t_{r}^{1 / n}\right], \Lambda\right)$ are essentially zero $)$
Then :

$$
\begin{gathered}
H^{q}\left(X_{\eta_{t}}, \Lambda\right)=H^{q}\left(Z^{r-1}, \Lambda\right)=\Lambda^{q} H^{1}\left(Z^{r-1}, \Lambda\right), \\
0 \rightarrow \Lambda \rightarrow \Lambda^{r} \rightarrow H^{1}\left(X_{\eta_{t}}, \Lambda\right) \rightarrow 0
\end{gathered}
$$

$$
(* *) \quad 0 \rightarrow Z^{r-1} \rightarrow Z^{r} \xrightarrow{\left(m_{1}, \cdots, m_{r}\right) \mapsto \sum m_{i}} Z \rightarrow 0 .
$$

$$
\text { split } \Rightarrow Z\left(=I_{t}\right) \text { acts trivially on } R^{q} \Psi \wedge\left(X_{\eta_{t}} \text { connected }\right)
$$

Bound on the unipotence exponent

Corollary
X / S semistable reduction, proper ; $r(X)$ maximum number of branches of $Y=X_{s}$ through a point. For $\sigma \in I$,

$$
(\sigma-1)^{N} \mid H^{q}\left(X_{\bar{\eta}}, \Lambda\right)=0
$$

for $N \geq \inf (q+1, r(X))$.
Proof: Use:

- $R^{q} \Psi \Lambda=0$ for $q \geq r(X)$
- $\sigma-1=0$ on $R^{q} \Psi \Lambda$
- $H^{q}\left(X_{\bar{\eta}}, \Lambda\right)=H^{q}\left(X_{s}, R \Psi \Lambda\right)$.

Variants with higher multiplicities

Th. generalized by Nakayama (1998) to log smooth map $f: X \rightarrow S$ between fs log schemes. In particular, for X / S with generalized semistable reduction, i. e. étale loc. of the form

$$
X=S\left[t_{1}, \cdots, t_{n}\right] /\left(t_{1}^{a_{1}} \cdots t_{r}^{a_{r}}-\pi\right)
$$

with $\operatorname{gcd}\left(p, a_{1}, \cdots, a_{r}\right)=1$. Again, $R \Psi \Lambda$ tame. However, I no longer acts trivially on $R^{q} \Psi \Lambda$. In strictly local case, $X_{\eta_{t}}$ no longer connected,

$$
\pi_{0}=\pi_{0}\left(X_{\eta_{t}}\right)=\operatorname{Coker}\left(Z^{r} \rightarrow Z\right), \quad\left(m_{i}\right) \mapsto \sum a_{i} m_{i}
$$

transitively permuted by $Z\left(=I_{t}\right)$, and

$$
R^{q} \Psi \Lambda=\Lambda\left[\pi_{0}\right] \otimes \Lambda^{q} H^{1}\left(Z^{r-1}, \Lambda\right)
$$

with action of I through π_{0} (regular representation). See also I.'s Overview in Astérisque 279.

4.2. Isolated singularities

Theorem
$S=$ strictly local trait ; X regular, flat, finite type over S, rel. dim n, smooth outside closed point $x \in X_{s}$. Then $R \Phi \Lambda \mid X_{s}-\{x\}=0$ and

$$
\left(R \Phi^{a} \Lambda\right)_{x}= \begin{cases}0 & \text { if } q \neq n \\ \Lambda^{r} & \text { if } q=n\end{cases}
$$

Remark Assume $k=k(s)$ alg. closed. If $\operatorname{char}(k)=0$, or (more generallly) $R \Psi \wedge$ tame (i. e. $R^{n} \Phi \Lambda$ tame), then

$$
r=\mu=\mu(X / S, x)
$$

Milnor number of X / S at $x,=\operatorname{dim} T_{X / S}^{1}(x)$, e. g. for X / S deduced from $f: Z=\mathbf{A}_{k}^{n+1} \rightarrow \mathbf{A}_{k}^{1}$ by localization, $x=0, f(0)=0$, then

$$
\mu=\operatorname{dim}_{k} \mathcal{O}_{z, x} /\left(\partial f / \partial x_{0}, \cdots, \partial f / \partial x_{n}\right)
$$

In general :
Deligne-Milnor conjecture

$$
\mu=r+\operatorname{sw}\left(R^{n} \Phi \Lambda\right)
$$

$\operatorname{sw}\left(R^{n} \Phi \Lambda\right)=$ Swan conductor, measuring wild ramification, $=0$ in tame case
proved by Deligne (SGA 7 XVI) if S of equal characteristic. Mixed char. case still open.

4.3. Quadratic singularities (SGA 7 XV)

Assume k alg. closed.
Theorem
In previous th. assume $x=$ ordinary quadratic singularity. Then $r=1, i$. .

$$
\left(R^{n} \Phi \Lambda\right)_{x}=\Lambda
$$

ordinary quadratic singularity means:

- $n=2 m-1$: X étale loc. near x isom. to

$$
V\left(\sum_{1 \leq i \leq m} x_{i} x_{i+m}+\pi\right) \subset \mathbf{A}_{S}^{2 m}
$$

near $\{0\}$ ($\pi=$ uniformizing parameter)

- $n=2 m$: X étale loc. near x isom. to

$$
\begin{cases}V\left(\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}+\pi\right) \subset \mathbf{A}_{S}^{2 m+1} & \text { if } p>2 \\ V\left(\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}+a x_{2 m+1}+\pi\right) \subset \mathbf{A}_{S}^{2 m+1} & \text { if } p=2\end{cases}
$$

near $\{0\}\left(a \in \mathfrak{m}, a^{2}-4 \pi \neq 0\right)$.

Action of inertia / on $R^{n} \Phi \wedge$:

- trivial if n odd
- through character ε of order 2 if n even, tame if $p>2$.

For X / S proper, flat, rel. dim. n, having isolated singularities, i. e. smooth outside finite $\Sigma \subset X_{s}$,

$$
R \Phi \Lambda=\oplus_{x \in \Sigma}(R \Phi \Lambda)_{x}
$$

Specialization sequence for $K=\Lambda$

$$
\cdots \rightarrow H^{i}\left(X_{\bar{s}}, K \mid X_{\bar{s}}\right) \xrightarrow{\mathrm{sp}} H^{i}\left(X_{\bar{\eta}}, K \mid X_{\bar{\eta}}\right) \rightarrow H^{i}\left(X_{\bar{s}}, R \Phi K\right) \rightarrow \cdots
$$

boils down to interesting part

$$
\begin{gathered}
0 \rightarrow H^{n}\left(X_{\bar{s}}, \Lambda\right) \xrightarrow{\text { sp }} H^{n}\left(X_{\bar{\eta}}, \Lambda\right) \xrightarrow{\varphi} \oplus_{x}\left(R^{n} \Phi \Lambda\right)_{x} \rightarrow \\
H^{n+1}\left(X_{s}, \Lambda\right) \rightarrow H^{n+1}\left(X_{\bar{\eta}}, \Lambda\right) \rightarrow 0 .
\end{gathered}
$$

- In isolated quadratic singularity case (and X smooth outside x), knowledge of $\left(R^{n} \Phi \Lambda\right)_{x} \xrightarrow{\sim} \Lambda$ (non canonical) doesn't suffice to calculate

$$
\varphi: H^{n}\left(X_{\bar{\eta}}, \Lambda\right) \rightarrow\left(R^{n} \Phi \Lambda\right)_{x}
$$

Needs duality between $\left(R^{n} \Phi \Lambda\right)_{x}$ and $H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right)$, i. e. perfect pairing

$$
\langle,\rangle: H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right) \otimes\left(R^{n} \Phi \Lambda\right)_{x} \rightarrow \Lambda
$$

and identification of a distinguished generator δ_{x} of $H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right)$ defined up to sign, called the vanishing cycle at x, so that φ given by

$$
\left\langle\delta_{x}, \varphi a\right\rangle=\operatorname{Tr}\left(\widetilde{\delta}_{x} \cdot a\right)
$$

$\left(\widetilde{\delta}_{x}=\right.$ image of δ_{x} in $H^{n}\left(X_{s}, \Lambda\right), \operatorname{Tr}: H^{2 n}\left(X_{s}, \Lambda\right) \rightarrow \Lambda=$ trace map, Tate twists ignored)

- Knowledge of action of I on $R^{q} \Phi \Lambda$ (or $R^{q} \Psi \Lambda$) does, n't suffice to determine action of I on $H^{n}\left(X_{\bar{\eta}}, \Lambda\right)$. For $\sigma \in I$, needs variation

$$
\operatorname{Var}(\sigma):\left(R^{n} \Phi \Lambda\right)_{x} \rightarrow H_{\{x\}}^{n}\left(X_{s}, R \Psi \Lambda\right)
$$

factoring $\sigma-1$:

$$
\begin{array}{cc}
H^{n}\left(X_{s}, \Lambda\right) & \longrightarrow\left(R^{n} \Phi \Lambda\right)_{x} \\
\sigma-1 & \operatorname{Var}(\sigma) \\
\downarrow & \downarrow \\
H^{n}\left(X_{s}, \Lambda\right) & H_{x}^{n}\left(X_{s}, \Lambda\right)
\end{array}
$$

For quadratic singularities, $\operatorname{Var}(\sigma)$ given by Picard-Lefschetz formula

$$
\operatorname{Var}(\sigma) a= \begin{cases}(-1)^{m} \frac{\varepsilon_{x}(\sigma)-1}{2}\left\langle\delta_{x}, a\right\rangle \delta_{x} & \text { if } n=2 m \\ (-1)^{m+1} t_{\ell}(\sigma)\left\langle\delta_{x}, a\right\rangle \delta_{x} & \text { if } n=2 m-1\end{cases}
$$

$\varepsilon_{x}: I \rightarrow \pm 1$ tame if $p>2$, defined by $t^{2}+a t+\pi=0$, if $p=2$ and local form of X near x is

$$
V\left(\sum_{1 \leq i \leq m} x_{i} x_{i+m}+x_{2 m+1}^{2}+a x_{2 m+1}+\pi\right)
$$

Proof of PL: • SGA 7 XV : by transcendental argument and comparison th. for n odd

- alg. proof: I. (2000), by reduction to semistable reduction with 2 branches.

PL : • key point in Grothendieck's semistable reduction theorem for abelian varieties

- starting point of cohomological theory of Lefschetz pencils $(\Rightarrow$ Weil I, II)

5. Grothendieck's local monodromy theorem

Here $\Lambda=\mathbf{Q}_{\ell}$.
Theorem
$s \rightarrow S \leftarrow \eta$: henselian trait, $k=k(s), p=\operatorname{char}(k), \ell \neq p ;$
$I \subset \operatorname{Gal}(\bar{\eta} / \eta)$: the inertia group
X / S separated, finite type ; $i \in \mathbf{Z}$;

$$
H^{i}:=\left\{\begin{array}{l}
H^{i}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right) \\
\operatorname{or} H_{c}^{i}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)
\end{array}\right.
$$

Then there exists an open subgroup $I_{1} \subset I$, independent of ℓ, such that

$$
\sigma \in I_{1} \Rightarrow \sigma \mid H^{i} \text { unipotent }
$$

History of the theorem

- Grothendieck (1967) gave 2 proofs of th. (without the complement on independence on ℓ, and only one being unconditional) :
(1) arithmetic proof for $H^{i}=H_{c}^{i}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$ (finiteness of $H^{i}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$ unknown at the time): unconditional, relying on Grothendieck's local monodromy lemma
(2) geometric proof for $p=0$, using resolution of singularities, absolute purity (available thanks to Artin), and calculation of $R^{q} \Psi \Lambda$ in generalized semistable reduction case (and $p=0$)

Grothendieck deduced from (2) : Milnor's quasi-unipotence conjecture for monodromy of isolated singularities (/C)

- Deligne (1996), using de Jong's alterations, made proof (2) work unconditionally, with complement on independence of ℓ (Berthelot's Bourbaki exposé 815)

Sketch of arithmetic proof

- special case: k finitely generated (or radicial over field finitely generated) over prime field
Then : $H^{i}=$ continuous, finite dimensional representation of $G_{K}=\operatorname{Gal}(\bar{\eta} / \eta)$. Apply Grothendieck's local monodromy lemma
- general case : reduce to special case by spreading out, using Néron's desingularization, and generic constructibility for $R^{i} f_{*}$ or $R^{i} f_{!}(S G A 7 \mid 1.3)$

Sketch of geometric proof, using de Jong

- WMA S complete : if $K=k(\eta), \operatorname{Gal}(\widehat{K} / \widehat{K}) \xrightarrow{\sim} \operatorname{Gal}(\bar{K} / K)($ SGA
$4 \times 2.2 .1)(S=\operatorname{Spec}(R), \widehat{K}:=\operatorname{Frac}(\widehat{R}))$
- Th. OK if X / S proper, semistable : $(\sigma-1)^{i+1} \mid H^{i}=0$
- Th. OK if X_{η} proper, smooth. Choose finite extension η_{1} / η s. t. components of $X_{\eta_{1}}$ are geometrically connected, replace X_{η} by component Z of $X_{\eta_{1}}$, then apply de Jong's theorem (possible as S complete) :
There exists: finite extension η_{2} of η_{1}, alteration $a: Z_{2} \rightarrow Z$ over η_{2} proper semistable model X_{2} / S_{2} of $Z_{2}, S_{2}=$ normalization of S in η_{2}.
composition $h: Z_{2} \xrightarrow{a} Z \rightarrow X_{\eta}$ proper, generically finite, degree d \Rightarrow

$$
\mathbf{Q}_{\ell} \rightarrow R h_{*} \mathbf{Q}_{\ell} \xrightarrow{\operatorname{Tr}} \mathbf{Q}_{\ell}
$$

is multiplication by $d ; \Rightarrow H^{i}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right) \hookrightarrow H^{i}\left(\left(X_{2}\right)_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$, OK by first case (proper, semistable)

- general case for H_{c}^{i} : use induction on $\operatorname{dim}\left(X_{\eta}\right)$, and de Jong (over fields) to reduce to previous case
- general case for H^{i} : use de Jong (over fields) and cohomological descent to reduce to X_{η} smooth, separated, then apply Poincaré duality between H^{i} and $H_{c}^{2 d-i}\left(d=\operatorname{dim}\left(X_{\eta}\right)\right)$

6 . The ℓ-adic weight spectral sequence

6.1. Direct proof of perversity of $R \Psi \wedge[n]$ in semistable case
$s \rightarrow S \leftarrow \eta$ strictly local trait, X / S strict semistable reduction, $Y=X_{s}=\sum_{1 \leq i \leq r} Y_{i}$ sncd, $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}, \operatorname{dim}(Y)=n$ as in 4.1

$$
Y=X_{s} \stackrel{i}{\hookrightarrow} X \stackrel{j}{\hookleftarrow} X_{\eta}
$$

$R \Psi \wedge$ tame \Rightarrow

$$
i^{*} R j_{*} \Lambda=R \Gamma\left(I_{t}, R \Psi \Lambda\right)
$$

$(*) \quad E_{2}^{i j}=H^{i}\left(I_{t}, R^{j} \Psi \Lambda\right) \Rightarrow H^{i+j}\left(I_{t}, R^{j} \Psi \Lambda\right)=i^{*} R^{i+j} j_{*} \Lambda$
concentrated on columns $i=0, i=1$ as $I_{t}=\widehat{\mathbf{Z}}^{\prime}(1)$
trivial action of I on $R^{j} \Psi \Lambda \Rightarrow$
$H^{0}\left(I_{t}, R^{j} \Psi \Lambda\right)=H^{1}\left(I_{t}, R^{j} \Psi \Lambda(1)\right)=R^{j} \Psi \Lambda$, hence
$(*) \quad E_{2}^{i j}=H^{i}\left(I_{t}, R^{j} \Psi \Lambda\right) \Rightarrow H^{i+j}\left(I_{t}, R^{j} \Psi \Lambda\right)=i^{*} R_{*}^{i+j} j_{*} \Lambda$
gives short exact sequences

$$
0 \rightarrow R^{q} \Psi \wedge(q) \rightarrow i^{*} R^{q+1} j_{*} \Lambda(q+1) \rightarrow R^{q+1} \Psi \wedge(q+1) \rightarrow 0
$$

spliced together into a resolution
$(* *) \quad 0 \rightarrow \Lambda_{Y} \xrightarrow{\theta} i^{*} R^{1} j_{*} \Lambda(1) \xrightarrow{\theta} \cdots \xrightarrow{\theta} i^{*} R^{n+1} j_{*} \Lambda(n+1) \rightarrow 0$,
with $\theta=$ cup product with tautological class in $H^{1}\left(I_{t}, \Lambda(1)\right)$
$(* *) \quad 0 \rightarrow \Lambda_{Y} \xrightarrow{\theta} i^{*} R^{1} j_{*} \Lambda(1) \xrightarrow{\theta} \cdots \xrightarrow{\theta} i^{*} R^{n+1} j_{*} \Lambda(n+1) \rightarrow 0$, absolute purity $\Rightarrow\left({ }^{* *}\right)$ isomorphic to
$(* * *) \quad 0 \rightarrow \Lambda_{Y} \rightarrow a_{0 *} \Lambda \xrightarrow{d} \cdots \xrightarrow{d} a_{n *} \Lambda \rightarrow 0$,
where $Y_{J}=\cap_{j \in J} Y_{j}$

$$
a_{m}: Y^{(m)}:=\coprod_{|J|=m+1} \rightarrow Y_{J}
$$

$d=$ Cech differential. In particular, get resolution
$(* * * *) \quad 0 \rightarrow R^{q} \Psi \wedge(q) \rightarrow a_{q *} \Lambda \rightarrow \cdots \rightarrow a_{n *} \Lambda \rightarrow 0$
$\operatorname{dim}\left(Y^{(m)}\right)=n-m \Rightarrow \Lambda[n-m]$ perverse on $Y^{(m)} \Rightarrow a_{m *} \Lambda[n-m]$ perverse on $Y \Rightarrow R^{q} \Psi \wedge[n-q]$ perverse on Y
$\Rightarrow R \Psi \wedge[n]$ perverse on Y, as predicted by Gabber's theorem.

6.2. Monodromy, kernel, and image filtrations

X / S as in 6.1 , but $\Lambda=\mathbf{Q}_{\ell}$. Recall monodromy operator

$$
N: R \Psi \wedge \rightarrow R \Psi \wedge(-1)
$$

(in $D(Y, \Lambda))$, satisfying $N^{n+1}=0(n=\operatorname{dim}(Y))$, characterized by

$$
\sigma \mid R \Psi \Lambda=\exp \left(N t_{\ell}(\sigma): R \Psi \Lambda \rightarrow R \Psi \Lambda\right)
$$

for $\sigma \in I$, where $t_{\ell}: I \rightarrow \mathbf{Z}_{\ell}(1)=\ell$-component of tame character. As

$$
R \Psi \wedge \in \operatorname{Per}(Y)[-n]
$$

N is a (Tate twisted) nilpotent endomorphism of $R \Psi \Lambda$ in the abelian category $\operatorname{Per}(Y)[-n]$
hence N defines 3 filtrations on $R \Psi \Lambda$:

- kernel filtration

$$
F_{i}=\operatorname{Ker} N^{i+1}, 0=F_{-1} \subset F_{0} \subset \cdots \subset F_{n}=R \Psi \wedge,
$$

- image filtration

$$
G_{j}=\operatorname{Im} \Lambda^{j}, R \Psi \Lambda=G^{0} \supset G^{1} \supset \cdots \supset G^{n} \supset G^{n+1}=0
$$

- monodromy filtration

$$
M_{r}=\sum_{i-j=r} F_{i} \cap G^{j}
$$

characterized by

$$
N\left(M_{k}\right) \subset M_{k-2}(-1)
$$

and

$$
N^{k}: g r_{k}^{M} R \Psi \Lambda \xrightarrow{\sim} g r_{-k}^{M} R \Psi \Lambda(-k) .
$$

Associated graded given by

$$
g r_{k}^{M} R \Psi \Lambda=\bigoplus_{p-q=k} g r_{p}^{F} g r_{G}^{q} R \Psi \Lambda .
$$

T. Saito (2003) explicitly determined :

- kernel filtration :

$$
F_{p}=\tau_{\leq p} R \Psi \Lambda
$$

(canonical truncation) ; in particular, $\mathrm{gr}_{p}^{F}=R^{p} \Psi \Lambda[-p]$

- trace on $\operatorname{gr}_{p}^{F}$ of image filtration: via the resolution $(* * * *) \quad 0 \rightarrow R^{p} \Psi \wedge(p) \rightarrow a_{p *} \Lambda \rightarrow \cdots \rightarrow a_{n *} \Lambda \rightarrow 0$,

$$
G^{q} \operatorname{gr}_{p}^{F}=\left(0 \rightarrow a_{p+q *} \Lambda \rightarrow \cdots \rightarrow a_{n *} \Lambda \rightarrow 0\right)(-p)
$$

(naïve filtration) (with $a_{n *} \wedge$ in degree n)

- associated graded for monodromy filtration :

$$
\operatorname{gr}_{p}^{F} \mathrm{gr}_{G}^{q}=\left(a_{p+q *} \Lambda\right)[-p-q](-p)
$$

Method of proof : use description of N given by Rapoport-Zink bicomplex $A^{\bullet, \bullet}$
Definition of $A^{\bullet \bullet \bullet}$: choose complex

$$
K=\left(K^{0} \rightarrow K^{1} \cdots \rightarrow K^{i} \rightarrow \cdots\right)
$$

of $\Lambda\left[Z_{\ell}(1)\right]$-modules on Y representing $R \Psi \Lambda$. Choose topological generator T of $\mathbf{Z}_{\ell}(1)$. Then

$$
i^{*} R j_{*} \Lambda \xrightarrow{\sim} M:=\mathbf{s}\left(K^{T-1} K\right)
$$

(where $s=$ associated simple complex). Define

$$
\begin{gathered}
K(1) \xrightarrow{1-T} K(1) \\
\left.1 \otimes T\right|^{\uparrow} \\
K \xrightarrow{T-1} K
\end{gathered}
$$

$$
A^{\bullet \bullet}=\mathbf{s}\left(q \mapsto A^{\bullet, q}=L^{q}, \theta: L^{q} \rightarrow L^{q+1}\right)
$$

$A^{\bullet \bullet}$ contained in first quadrant :

with augmentation

$$
\varepsilon: K(=R \Psi \Lambda) \rightarrow A^{\bullet \bullet}
$$

induced by $1 \otimes T: K \rightarrow M(1)[1]$. Exact sequences
$(* * * *) \quad 0 \rightarrow R^{q} \Psi \Lambda(q) \rightarrow a_{q *} \Lambda \rightarrow \cdots \rightarrow a_{n *} \Lambda \rightarrow 0$
$\Rightarrow \varepsilon$ induces exact sequences on cohomology columns, hence an isomorphism (in $D^{+}\left(Y, \wedge\left[\mathbf{Z}_{\ell}(1)\right]\right.$)

$$
\varepsilon: R \Psi \wedge \xrightarrow{\sim} \mathbf{s} A^{\bullet, \bullet} .
$$

Advantage of $A^{\bullet \bullet \bullet}:\left(\right.$ for $\left.\Lambda=\mathbf{Q}_{\ell}\right)$
$N: R \Psi \Lambda \rightarrow R \Psi \Lambda(-1)$ becomes visible :

$$
N=\left((T-1) \otimes T^{\vee}\right) \cdot u
$$

u an automorphism. The nilpotent endomorphism

$$
\widetilde{N}:=(T-1) \otimes T^{\vee}: R \Psi \wedge \rightarrow R \Psi \wedge(-1)
$$

($T^{\vee} \in \mathbf{Z}_{\ell}(-1)$ dual of T), which makes sense for $\Lambda=\mathbf{Z} / \ell^{\nu} \mathbf{Z}$, is induced from the endomorphism

$$
\nu: A^{\bullet \bullet} \rightarrow A^{\bullet-1, \bullet+1}(-1)
$$

$\nu \mid A^{i, j}:=(-1)^{i+j+1}$ canonical projection $A^{i, j} \rightarrow A^{i-1, j+1}(-1)$ and monodromy filtration $M_{\bullet} R \Psi \wedge$ given by

$$
M_{r} R \Psi \Lambda=\mathbf{s} W_{r} A^{\bullet \bullet}:=\mathbf{s}\left(q \mapsto \tau_{\leq r+q} A^{\bullet, q}\right)
$$

(sW. sometimes called (shifted) weight filtration)

6.3. The weight spectral sequence

X / S proper, strictly semistable, $\Lambda=\mathbf{Q}_{\ell}$
Filtration M_{r} on $R \Psi \Lambda$ in $\operatorname{Per}(Y)[-n]$
\mapsto quasi-filtration (or spectral object $M_{[p, q]} R \Psi \Lambda$) in $D_{c}^{b}(Y, \Lambda)$
\mapsto spectral sequence
(*) $\quad E_{1}^{i, j}=H^{i+j}\left(Y, \mathrm{gr}_{-i}^{M} R \Psi \Lambda\right) \Rightarrow H^{i+j}\left(X_{\bar{\eta}}, \Lambda\right)$,
called weight spectral sequence.
Alternate definition : $\left({ }^{*}\right)=$ spectral sequence of filtered complex

$$
\left(\mathrm{s} A^{\bullet \bullet}, \mathrm{s} W_{\bullet}\right)
$$

Recall

$$
\begin{gathered}
\operatorname{gr}_{k}^{M} R \Psi \Lambda=\bigoplus_{p-q=k} \operatorname{gr}_{p}^{F} \operatorname{gr}_{G}^{q} R \Psi \Lambda, \\
\operatorname{gr}_{p}^{F} \operatorname{gr}_{G}^{q}=\left(a_{p+q *} \Lambda\right)[-p-q](-p)
\end{gathered}
$$

\Rightarrow in total degree m

$$
E_{1}^{-r, m+r}=\oplus_{q \geq 0, r+q \geq 0} H^{m-r-2 q}\left(Y^{(r+1+2 q)}, \mathbf{Q}_{\ell}\right)(-r-q)
$$

differential $d_{1}=$ sum of restriction and Gysin maps ($\left(E_{1}, d_{1}\right)$ depends only on Y)
(but $\left(^{*}\right)$ does depend on X, actually only on $X \otimes R /\left(\pi^{2}\right)$ (Nakayama))

Arithmetic case

Assume $S=S_{0(s)}$, strict localization of henselian trait $s_{0} \rightarrow S_{0} \leftarrow \eta_{0}$, and

$$
\left(Y \xrightarrow{i} X \stackrel{j}{\leftarrow} X_{\eta}\right)=S \times S_{0}\left(Y_{0} \xrightarrow{i_{0}} X_{0} \stackrel{j_{0}}{\leftarrow} X_{\eta_{0}}\right)
$$

with X_{0} / S_{0} proper, strict semistable, rel. dim. n. Then $G:=\operatorname{Gal}\left(\bar{\eta} / \eta_{0}\right)$ acts on $R \Psi \Lambda$, compatibly with action on Y N is G-equivariant, and weight spectral sequence
$(*) \quad E_{1}^{i, j}=H^{i+j}\left(Y, \mathrm{gr}_{-i}^{M} R \Psi \Lambda\right) \Rightarrow H^{i+j}\left(X_{\bar{\eta}}, \Lambda\right)$,
is G-equivariant.
Note: G acts on E_{1} through $G_{0}:=\operatorname{Gal}\left(k / k_{0}\right)$.

6.4. Main results and conjectures

Theorem
The weight spectral sequence
(*)
$E_{1}^{-r, m+r}=\oplus_{q \geq 0, r+q \geq 0} H^{m-r-2 q}\left(Y^{(r+1+2 q)}, \mathbf{Q}_{\ell}\right)(-r-q) \Rightarrow H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$
degenerates at E_{2}.
Indications on proof

- $\operatorname{char}(k)=0$: reduce to X / S coming by localization from proper map $X^{\prime} / S^{\prime}, S^{\prime}=$ smooth curve $/ \mathrm{C}, X^{\prime} / S^{\prime}$ having strict semistable reduction at $s \in S^{\prime}$. Use comparison theorem with $R \Psi_{c l} \mathbf{C}$, and Hodge theory :
$E_{1}^{-r, m+r}$: pure Hodge structure of weight
$m-r-2 q+2 r+2 q=m+r$, hence
$E_{s}^{-r, m+r}$: pure Hodge structure of weight $m+r$, hence
$d_{s}: E_{s}^{-r, m+r} \rightarrow E_{s}^{-r+s, m+r-s+1}$ vanishes for $s \geq 2$
- $k_{0}=\mathbf{F}_{q}, X / S=S \times S_{0}\left(X_{0} / S_{0}\right)$ as in arithmetic case. Let

$$
F_{q} \in \operatorname{Gal}\left(k / k_{0}\right), \quad a \mapsto a^{1 / q}
$$

be the geometric Frobenius, and

$$
F \in \operatorname{Gal}\left(\bar{\eta} / \eta_{0}\right) \mapsto F_{q}
$$

a lifting. Then F defines an automorphism F^{*} of $R \Psi \mathbf{Q}_{\ell}$, hence an automorphism F^{*} of the weight spectral sequence ($*$).

Deligne's Weil II \Rightarrow :
for all $1 \leq s \leq \infty, E_{s}^{-r, m+r}$ is pure of weight $m+r$, i. e. eigenvalues of F^{*} are q-Weil numbers of weight $m+r$
(NB. as inertia I acts unipotently, eigenvalues of F^{*} don't depend on choice of lifting F of F_{q})
$\Rightarrow d_{s}=0$ for $s \geq 2$

- General case. Two (independent) proofs (by reduction to arithmetic case)
- Nakayama (2000), using log geometry
- Ito (2005), using spreading out and Néron's desingularization as in arithmetic proof of local monodromy theorem

The following is the so-called weight monodromy conjecture Conjecture Define $\widetilde{M}_{\bullet}:=$ abutment filtration of ${ }^{*}$). Then
$\tilde{M}_{\bullet} \mid H^{m}=$ monodromy filtration M_{\bullet} of nilpotent endomorphism N of $H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$.
$\left(N: H^{*} \rightarrow H^{*}(-1)\right.$ defined by $\sigma \mid H^{*}=\exp \left(t_{\ell}(\sigma) N: H^{*} \rightarrow H^{*}\right)$ for $\sigma \in I)$
Remark
Conjecture means :

$$
N^{r}: \operatorname{gr}_{r}^{\tilde{M}} H^{m} \xrightarrow{\sim} \operatorname{gr}_{-r}^{\tilde{M}} H^{m}(-r)
$$

By definition, $\operatorname{gr}_{r} \widetilde{M} H^{m}=E_{\infty}^{-r, m+r}$, and by degeneration at E_{2},

$$
E_{\infty}^{-r, m+r}=E_{2}^{-r, m+r}
$$

Therefore, conjecture \Leftrightarrow

$$
N^{r}: E_{2}^{-r, m+r} \xrightarrow{\sim} E_{2}^{r, m-r}(-r)
$$

Recall :

$$
N=\widetilde{N} . \text { automorphism }
$$

$$
\widetilde{N}:=(T-1) \otimes T^{\vee}: R \Psi \wedge \rightarrow R \Psi \wedge(-1)
$$

($T^{\vee} \in \mathbf{Z}_{\ell}(-1)$ dual of T), induced by

$$
\nu: A^{\bullet \bullet} \rightarrow A^{\bullet-1, \bullet+1}(-1)
$$

$\nu \mid A^{i, j}:=(-1)^{i+j+1}$ canonical projection $A^{i, j} \rightarrow A^{i-1, j+1}(-1)$
and

$$
\operatorname{gr}_{r}{ }_{W_{\bullet}} \mathbf{s} A^{\bullet \bullet \bullet}=\oplus_{p-q=r} a_{p+q *} \Lambda(-p),
$$

hence

$$
N^{r}: E_{1}^{-r, m+r} \xrightarrow{\sim} E_{1}^{r, m-r}(-r) .
$$

Main difficulty: $N^{r} \mid E_{2}$ involves model X / S, not just special fibre Y
To explain the name weight monodromy conjecture, needs

Interlude : the weight filtration

$s \rightarrow S \leftarrow \eta$ strict localization of
$s_{0} \rightarrow S_{0} \leftarrow \eta_{0}$: henselian trait, with $k_{0}=k\left(s_{0}\right)=\mathbf{F}_{q}, \ell \neq p$
V : finite dimensional \mathbf{Q}_{ℓ}-representation of $G=\operatorname{Gal}\left(\bar{\eta} / \eta_{0}\right)$.
Recall : inertia $I=\operatorname{Gal}(\bar{\eta} / \eta)$ acts quasi-unipotently on V : open subgroup $I_{1} \subset I$ acts unipotently (Grothendieck's monodromy lemma). Implies :

Observation (Deligne) : Let $F^{\prime}, F^{\prime \prime}$ be liftings of F_{q} in G, and $\left\{\lambda_{1}^{\prime}, \cdots, \lambda_{N}^{\prime}\right\},\left\{\lambda_{1}^{\prime \prime}, \cdots, \lambda_{N}^{\prime \prime}\right\}$ their sets of eigenvalues (in $\overline{\mathbf{Q}}_{\ell}$). Then there exist $n \geq 1 \mathrm{~s}$. t .

$$
\left\{\lambda_{1}^{\prime n}, \cdots, \lambda_{N}^{\prime}{ }^{n}\right\}=\left\{\lambda_{1}^{\prime \prime n}, \cdots, \lambda_{N}^{\prime \prime}{ }^{n}\right\}
$$

Consider condition
(A) For a lifting F of F_{q}, any eigenvalue λ of F is a q-Weil number (of weight $w=w(\lambda) \in \mathbf{Z}$)

Observation \Rightarrow : does not depends on choice of F (as roots of unity $=q$-Weil integers of weight 0)
Deligne [Weil II 1.7.5] :
Lemma
Assume V satisfies (A). Let

$$
W(\bar{\eta} / \eta)=\left\{g \in \operatorname{Gal}(\bar{\eta} / \eta) \mapsto F_{q}^{n} \in \operatorname{Gal}(\bar{s} / s), n \in \mathbf{Z}\right\}
$$

be the Weil group. Then there exists a unique $W(\bar{\eta} / \eta)$-stable finite increasing filtration

$$
W_{\bullet} V
$$

called the weight filtration, s. $t . \mathrm{gr}_{n}^{W} \cdot V$ pure of weight n.

Arithmetic rephrasing of WMC

X_{0} / S_{0} proper, strictly semistable, $X / S=S \times S_{0}\left(X_{0} / S_{0}\right)$.
Weil conjectures \Rightarrow all $E_{s}^{-r, m+r}$ in weight monodromy spectral sequence satisfy (A). Moreover :
$\widetilde{M}_{\bullet} H^{m} \operatorname{Gal}(\bar{\eta} / \eta)$-stable, and $\operatorname{gr}_{r}^{\widetilde{M}_{\bullet}} H^{m}$ pure of weight $m+r$ $\left(H^{m}=H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)\right)$.
$\Rightarrow \widetilde{M}_{\bullet-m} H^{m}=$ weight filtration on H^{m}, i. e. $\widetilde{M}_{r}=W_{m+r}$ Hence: WMC \Leftrightarrow (weight filtration) $=$ (shifted monodromy filtration), i. e. $W_{\bullet} H^{m}=M_{\bullet-m} H^{m}$

Using de Jong's alterations, get :
Corollary
Let Z_{0} / η_{0} proper and smooth, $Z=\eta \times_{\eta_{0}} Z_{0}, m \in \mathbf{Z}$. Then :
(a) $H^{m}=H^{m}\left(Z_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$ satisfies (A).
(b) Assume WMC holds. Then :
$M_{\bullet-m} H^{m}=$ weight filtration on H^{m}, i. e. $M_{r} H^{m}=W_{r+m} H^{m}$
where $M_{\bullet}=$ monodromy filtration of nilpotent operator $N: H^{m} \rightarrow H^{m}(-1), \sigma=\exp \left(t_{\ell}(\sigma) N\right)$ for $\sigma \in$ suitable open $I_{1} \subset I$.

History and status of WMC

- WMC first appears in Deligne's Hodge I, §9, in the context of Hodge theory, for projective smooth varieties over an open disc, as a statement without proof. No proof given in Hodge II, III.
- same context : proof given by Steenbrink (1975) for semistable reduction case, but proof had a gap, found by ElZein
- proof corrected independently by Deligne (unpublished) and M. Saito in ([Modules de Hodge polarisables, RIMS 24, 1988], 4.2)
- arithmetic case (k_{0} finite), equal characteristic, WMC (in the form of corollary) proved by Deligne (Weil II, 1.8.4)
- arithmetic case (k_{0} finite), mixed characteristic, WMC proved by Rapoport-Zink (1982) for $\operatorname{dim}\left(X_{\eta}\right) \leq 2$
- general equicharacteristic case : WMC proved by Ito (2005)
- WMC proved for certain 3-folds X_{η}, or certain p-adically uniformized varieties X_{η} : Ito $(2004,2005)$
- WMC proved for X_{η} set-theoretic complete intersection in projective space (or smooth toric projective variety) : Scholze (2011), using perfectoid spaces to reduce to equicharacteristic case

The local invariant cycle theorem

Notation and hypotheses of WMC.
Recall : nilpotent operator $N: R \Psi \mathbf{Q}_{\ell} \rightarrow R \Psi \mathbf{Q}_{\ell}(-1)$ defines kernel filtration

$$
F_{i}=\operatorname{Ker} N^{i+1}, 0=F_{-1} \subset F_{0} \subset \cdots \subset F_{n}=R \Psi \mathbf{Q}_{\ell}
$$

hence \mapsto quasi-filtration (or spectral object $F_{[p, q]} R \Psi \mathbf{Q}_{\ell}$) in $D_{c}^{b}\left(Y, \mathbf{Q}_{\ell}\right)$
\mapsto spectral sequence
$(K 1) \quad E_{1}^{i, j}=H^{i+j}\left(Y, \operatorname{gr}_{-i}^{F} R \Psi \mathbf{Q}_{\ell}\right) \Rightarrow H^{i+j}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$,

Recall :

$$
F_{i} R \Psi \mathbf{Q}_{\ell}=\tau_{\leq i} R \Psi \mathbf{Q}_{\ell}
$$

\Rightarrow up to renumbering,
$(K 1) \quad E_{1}^{i, j}=H^{i+j}\left(Y, \operatorname{gr}_{-i}^{F} R \Psi \mathbf{Q}_{\ell}\right) \Rightarrow H^{i+j}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$,
$=2$ nd spectral sequence of hypercohomology of Y with value in $R \Psi \mathbf{Q}_{\ell}$
$(K 2) \quad E_{2}^{i, j}=H^{i}\left(Y, R^{j} \Psi \mathbf{Q}_{\ell}\right) \Rightarrow H^{i+j}\left(Y, R \Psi \mathbf{Q}_{\ell}\right)=H^{i+j}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)$
called spectral sequence of vanishing cycles

Corollary

Assume X satisfies WMC. Then (K1) (resp. (K2)) degenerates at E_{2} (resp. E_{3}) and the abutment filtration is the kernel filtration : for (K2) we have

$$
F^{m-r} H^{m}=\operatorname{Ker} N^{r+1}: H^{m} \rightarrow H^{m}(-r-1)
$$

Proof: (almost) formal from WMC (M. Saito-Zucker) : use degeneration at E_{2} of spectral sequence associated with filtration of $\operatorname{gr}_{F} R \Psi \mathbf{Q}_{\ell}$ cut-out by image filtration
As $H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)^{\prime}=\operatorname{Ker}\left(N: H^{m} \rightarrow H^{m}\right)$, get:
Corollary
Assume X satisfies WMC. Then :
(lic) $\quad \operatorname{Im}\left(\mathrm{sp}: H^{m}\left(X_{\bar{s}}, \mathbf{Q}_{\ell} \rightarrow H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)\right)=H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)^{\prime}\right.$

Formula (lic) is called local invariant cycle theorem.

Remark Independently of WMC, in the equal char. case, Deligne (Weil II, 3.6.1) proves the more general (lic) :
Theorem
$S=$ strict localization at a closed point of smooth curve over an alg. closed field $k, X / S$ proper, s. t. X essentially smooth over k and $X_{\bar{\eta}} / \bar{\eta}$ smooth. Then (lic) holds, i. e.

$$
\operatorname{Im}\left(\mathrm{sp}: H^{m}\left(X_{s}, \mathbf{Q}_{\ell}\right) \rightarrow H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)\right)=H^{m}\left(X_{\bar{\eta}}, \mathbf{Q}_{\ell}\right)^{\prime}
$$

7. Further developments

- Hodge theory of nearby cycles (Steenbrink, M. Saito, ...)
- log nearby cycles (Kato, Nakayama, ...)
- ramification, characteristic cycles, Euler-Poincaré formulas, ℓ-adic Riemann-Roch (Deligne ; Laumon ; Abbes, T. Saito, Kato, ...)
- oriented products and nearby cycles over general bases (Deligne ; Sabbah ; Orgogozo, Gabber, ...)

