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1. Discs and traits

local ring A : henselian : any finite A-algebra B = product of local
rings

& any strictly essentially étale local A-algebra is A-isomorphic to A
(EGA IV 18.5.11, 18.6.6)

A strictly henselian : any essentially étale local A-algebra is
A-isomorphic to A (< henselian + residue field separably closed)

Spec A strictly local : A strictly henselian

complete noetherian local = henselian



trait : S = Spec R, R a dvr (discrete valuation ring)

closed point : s = Speck, k = R/m
generic point n = Spec K, K = Frac R

S henselian, L/K finite separable = O; = product of finite local
R-algebras



Analogies

Disc Trait
open disc strictly local trait
D={|z| <1} S =SpecR
{0} e D ses
D* = D — {0} nes
coordinate z in D uniformizing parameter m € R
/DV*:{ImT>O}—>D* 7 = Spec K — 1 = Spec K
universal cover 7 — exp(27iT) K = separable closure of K
m1(D*, t) = Aut(B;) =Z inertia group m1(7/n) = Gal(K/K)

last analogy OK if char(k) = 0, too coarse if char(k) =p >0



Stucture of inertia
I = Gal(K/K)
1P 157(1)>1

Z'(1) = Gal(ne/n) = lim (Z/nZ)(1)(k) = [] Zo(1)(
(nvp):]' f;ﬁp

nt = Spec Ke, Ky = U p)=1 K(wl/”), p = char.exp(k)

(maximal tamely ramified extension of K in K)

t:l— 2’(1) : tame character :

t(g) = g’ /7" € pn(k), 7" =7



15P—15Z(1)—1
Abhyankar's lemma = P : a pro-p-group : wild inertia

(well understood if k alg. closed ; if not, complicated ramification
(work in progress (Abbes, T. Saito, ...))



Arithmetic case
R henselian, k, K

k : separable closure of k ; R’ = R" associated strict henselization,
R jw' = k,
K’ = Frac R’ = K,, : maximal unramified extension of K

K — Ky — (Kur)t = K

(K = separable closure of K,,)
Gk = Gal(R/K), G = Cal(Kur/K) = Gal(k/k), | = Cal(K/K')

1 / Gk G 1

Lol

11—l ——(Gk)t —= G ——=1

I, = Gal(K!/K")



Gy acts on [y by conjugation , and isomorphism induced by tame
character
t: It ~ Z,(l)

is Gg-equivariant : for o € Iy, g € Gy,
t(gog™") = t(o)*(&)

where x : Gy — Z"* = cyclotomic character



Application : Grothendieck's local monodromy lemma

Lemma
Assume no finite extension of k contains all ¢"-th roots of 1 for
n>1. Let

p: Gk — GL(V)

be a continuous representation, VV = finite dimensional Qg-vector
space.

Then there exists an open subgroup I C | such that p(c) is
unipotent for all o € I'.



Proof

Up to finite extension of K, WMA

(%) Im(p) C 14 2Mn(Z))

Will show : p(o) unipotent for all o € |
(*) = Im(p) = pro-¢-group

= p factors through Gal(K;/K), where K; = UK, (7%/*").



Let o € Iy = Gal(Ky/Kur) = Zy(1).
Recall : for all g € Gy,
(%) gog ' =0\

(x 1 Gk = Zj = cyclotomic character)



(%) gog ' =0\

Let x := p(0),
X =logx = ZnZI(—l)”_l(x —1)"/n € (2M,(Z,)

(**) =
gXg ™t =x(g)X

= forall/>1 .
ci(X) = x(g)'ci(X),

where

det(X.ld —t) = X" — 1 (X)X + -+ (=1)"cn(X).



Hypothesis on k = x(Gi) = Gal(k(pe~)/k) C Zj infinite
= there exists g € G s. t. x(g) is of infinite order

since '
ci(X) = x(g)'ci(X),

get ¢i(X)=0Vi>1
= X nilpotent

= (as £ > 2), x = exp(X) (¢ > 2) unipotent. Qed.



Compare with Grothendieck's proof of /-adic Chern classes of linear
representations of discrete groups being torsion

(Th. 4.8 in [Classes de Chern et représentations ¢-adiques des
groupes discrets, Dix exposés sur la cohomologie des schémas,
North Holland Pub. Co., 1968])

Theorem
(Grothendieck) G a discrete group of finite type, k separably
closed, p: G — GL(E), E/k finite dimensional, ¢ # char(k). Then

ci(p) € H*(G,Zy(k)(i))

is torsion for all | > 1.



2. The functors RV and R®

S = henselian trait
N = Z/¢"Z (or finite over it) (or ¢-adic variants)
X/S

over




RVF :=i"Rj,(F|X;) € DY (Xs,N)
nearby cycles complex (cf. [SGA 71, 2.2])

(Trivial) example : X =S, RVF = R (S5, Rj..Fy) = Fy



Alternate definition

(cf. [SGA 7 XIII 1.3])

Xz —> Xz Xy
.y
Xs — XS

(§ = integral closure of S¢) in 77, s — 3 radicial)
RVF = i*Rj.(F|Xp)

(use pbc and (Xs)et = (X5)et)



Stalks

X — Xz geometric point
Milnor ball Xz (strict localization at X)

Milnor fiber (Xx))7

(RVF)x = RT((Xx))m F)



Galois action
G = Gal(7/n) acts on RVF :

RWF underlies a complex of sheaves (of A-modules) on Xs with a
continuous action of G
compatible with action of G on Xz via G — Gal(5/s)

Define
—
Xsxsn = topos of G-sheaves on Xs (Deligne's oriented product)

Then :
%
RWVF € DT (Xsxsn,N)

In particular :
e RIVF is a G-sheaf on Xz

e any g € G defines an automorphism
g" € Aut(RVF)

of the underlying object RUF of DT (Xz, A)



Vanishing cycles

For K € D*(X,A) (not in DT (X, ), adjunction map defines
G-equivariant triangle (i. e. a triangle of D+(X5;5n,/\))

K|Xs = RU(K|X,) — ROK —

R®K : vanishing cycles complex
Trivial example (cont'd) X = S, K € D*(S,A)
Ks B K; — ROK —

sp = specialization map



(X/S, K) locally acyclic at x € Xs <gef (RPK)x =0 (X — x
geometric point)

locally acyclic < qer locally acyclic at each point

=4 Ky 5 RF((X(;))W, K)

X /S smooth, ¢ invertible on S, K a lisse sheaf

= (X/S, K) locally acyclic (Artin’s local acyclicity theorem)

But if ¢ = p, p = char(k), X/S smooth, A=2Z/p"Z,
R®K highly non-trivial (studied by Bloch-Kato, Tsuji, ...)



Invariants under inertia, tame nearby cycles

F € DT(X,,\)

J
I

- 3

i Jur
XE > XS(E) < Xnur Thr

7 Rjur«(F| Xur) = RT (1, RVF)

1—>P—>/—t>lt—>1

P a pro-p-group (wild inertia), p = char.exp(k), t = tame
character,

It — ]__[Z/;ép Zg/(].)



1P 15 E—1

Tame nearby cycles

RW.F := R[(P, RVF) = " Rju.(F| Xy,

RVF tame <qef RWF = RWF (I acts through k)
Note : M+ (P, M) = M" exact on A-modules if £ # p



3. General theorems on nearby and vanishing cycles

3.1. Functoriality

X-hoy Xs —> X5, <— X5
1 e
s Ye s Ve, <1 ¥y

(1) Push-out
bc map (for Rh,) gives

RVRh, F — Rhs,RVF

isomorphism if h proper (pbc)



In particular (Y = S), if X/S proper, get G-equivariant
isomorphism
RT(Xs, F) 5 RT(Xs, RVF)

and, for K € D™(X, ), long exact sequence

= H (X5, K| Xs) B HI(Xg, K| Xg) — H (X5, ROK) — - -

sp: H'(Xs, K| Xs) + H"(XS(E), K) — Hi (X, K| Xz5)
called specialization map

RI(Xs, R®K) measures defect of sp being an isomorphism
(X, K) locally acyclic outside closed ¥ C X

= defect concentrated on X

X /S proper and smooth, ¢ # p = sp : R[(Xs,A) = RI(Xz, )

NB. Fails for £ = p (first case : jump of p-rank of elliptic curve)



(2) Pull-back

X
o
&

bc map (for Rj,) gives
hiRVF — R\Uh;;F

isomorphism if ¢ invertible on S and h smooth (smooth bc)

(fails for h smooth but ¢ = p)



From now on we assume ¢ invertible on S



3.2. Base change

X —=X Xs/*/*)XE
SS——=S §——5

cartesian squares, with S’ — S dominant map of henselian traits,

F € D*(X,, ). Then, bc map
(RWx,sF)|Xy — RV x5 (FIX))
is an isomorphism (Deligne, SGA 4 1/2, Th. finitude 3.7)

(trivial if S’ = normalization of S in finite extension of k(n)
contained in k(7))



3.3. Finiteness

DI (T,N) :={K e D" (T,N)|H9(K) constructible Vq}
(ditto for D?)

Assume X /S of finite type. Then :
RV : DI (X,,N) — DI (Xs, N)

(Deligne, SGA 4 1/2 Th. finitude, 3.2)
Moreover, affine Lefschetz (Artin) (SGA 4 XIV) implies :

RIVF =0

for g > dim(X;)
and all sheaves of A-modules F on X, (SGA 7 | 4.2)



In particular
RV : DE(X,,N) — DE(Xs, N

and
RV . Dctf(Xn,/\) — D (X5, N)

where

Deer(T,N) = {K € D5(T,A)|K of finite tor-dimension }

(Dctr important for ¢-adic formalism :

roughly, D2(T. Z) = 2 — ljm Dere(T. Z/£72))



3.4. Duality and perversity

Recall biduality : for T regular noetherian of dimension 0 or 1, and
a:Z—T,

Kz := Ra'At is dualizing,

i. e. D7 := RHom(—, Kz) sends D’ to D? and D;D; = Id
(Deligne, SGA 4 1/2, Th. finitude, 4.3)

Assume f : X — S separated and of finite type.

Theorem (Gabber, [I] 4.2) For F € D2(X,, ), have canonical
isomorphism of Dé’(Xs;sn,/\) (i. e. “G-equivariant in D?(Xs,A\)")

RV Dx, F = Dx.RVF

| = L. I., Autour du théoréme de monodromie locale, in Astérisque
223



(%) RV Dx, F = Dx.RVF
Corollary 1
RV : Per(X,,\) — Per(Xs, \)

where Per(—, ”) = full subcategory of D?(—, A\) consisting of
perverse sheaves,

Here A = Z/(¥Z, or finite extension of Qg, or Q/ (complications
for Z-coefficients)

Proof of corollary 1 : RV right t-exact ([BBD],4.4.2) (i. e.
preserves pDSO);

(*) = RW left t-exact, hence t-exact



Recall : T separated, finite over a field k, £ invertible in k, then,
for K € D2(T,N)

K e PD=0 & HIi*K = 0Vq > —dim(x)

K € PD=% & HIi.K = 0VYq < —dim(x)

Per(T,A) = PD=°(T,A)nPD=°(T,A)
right t-exact : sends PD<0 to PD=0
left t-exact : sends PD=0 to PD=0

t-exact : both left and right t-exact (hence sends Per to Per)



Recall triangle defining vanishing cycles :

K| Xs — RV(K|X,) — ROK —
Corollary 2 (Gabber [I] 4.6)

K € Per(X,\) = R®K[—1] € Per(Xs, A)

X/S, S a trait, not a field, t-structure on D?(X,A) defined by :

K € PD=O(X,A) & j*K € PD="1(X,,N)and i*K € PD=°(X;, A)

K € PD=°(X,A) & j*K € PD=71(X,,A)and i*K € PD=%(X;, \)



3.5. Kiinneth
Xi/S finite type (i = 1,2), X := X1 x5 X2, Fi € Deer((Xi)n, N)

F=F L F = pI‘TFl ®L prze.
X
D\
X1 X5
S

Theorem (Gabber, [I] 4.7) : The Kiinneth map

Ry, ;sFL RN Ry sFy — RV sF

is an isomorphism (of D(Xs;sn,/\)). (This is not formal.)



Indications on proofs of 3.2 to 3.5

e Deligne's method (SGA 4 1/2, Th. finitude) : use induction on
dimension, cut out by pencils, concentrate the defect on a finite
number of closed points, conclude by a global argument

e alternate method : use dévissage and de Jong's alterations to
reduce to the semistable reduction case, treated by direct
calculation (see § 4)



3.6. Comparison with complex nearby cycles

Recall : X/C loc. finite type — analytic space X (= X(C),
classical topology : usual, or local isomorphisms)

étale map X — Y gives local isomorphism X, — Y, hence we
have a canonical map

[ XC/ — Xet
(e"(V) = Ua)
N=Z/NZ ; for F € D" (Xet, ), get a comparison map
(%) RT(Xet, F) — R (X, €"F)
Theorem

(Artin) For X /C finite type and F € DI (Xet,\) (i. e. HIF
constructible for all q), (*) = isomorphism



e . XC/ — Xet

(%) RT (Xet, F) = RT(Xy,&*F)

Generalization for f : X — Y finite type :
e*Rfers F = Rfgu(e*F)

(F € DX (X,N))



Comparison between RV, and RV

Set-up : Y /C smooth connected curve, 0 € Y(C), f: X = Y
separated, finite type, Xo = f~1(0)

e RU(=RV,)
S : henselization of Y at 0,0 - S+ n«+ 7= H(_mn(tl/”)

RW : D*(X — Xo, \) — D*(Xo, A)
+ action of G = Gal(77/n)(=> Z(1)) on RVF
RW : D*(X — Xo, A) — DF(Xo x 11, A)
(Sh(Xo x n,\) = sheaves of A[G]-modules on Xo
(= (Xo)er x BZ(1))

RUK = i*Rj,(K|X;),



°* RV, .
{0} - D« D* + D*

universal cover of punctured disc D* near 0
(Xo)a — f7H(D) & £71(D¥)
R\UC/ . D+((X — XO)cla/\) — D+((X0)C/,/\)

RV o(F) = i*Rj.(F|f;*(D%))
+ action of 1 (D*) = Aut(D*/D) 5 Z

RWC/ . D+((X — Xg)cl,/\) — D+((X0)C/ X B?Tl(D*),/\)



e Comparison map

e (Xo)c/ X BTrl(D*) — Xo xXn

(%) £ RVK — RU(c*K)

(in D((Xo)ar x BZ,N))
To define ¢, relate D* and 7 as follows :

k(77) = { germs at 0 of holomorphic functions on D* algebraic
over field of functions of Y }

Define (*) by approximation, writing normalization of S in 7}
as an inverse limit of affine Y-schemes of finite type, and
using previous comparison map for finite type C-schemes

details in SGA 7 X XIV



Theorem
For K € DF (X — Xo, A)

(%) e*RVK — RV 4(e*K)
is an isomorphism

In particular :

Corollary

(RU4Z)® Z; = RVZ,



4. Examples

Even for F = A, RVF explicitly calculated in very few cases :
e Semistable reduction (and variants)

e Quadratic singularities



4.1. Semistable reduction

S : strictly local trait, s = S <7

X /S semistable reduction <qe¢ X flat, ft/ S, X, smooth, X
regular, and Xs C X = reduced divisor with normal crossings

& étale locally on X, X isomorphic to S[t1, -, tp]/(t1---t, — )
(m = uniformizing parameter in R, S = SpecR) ;
Xs = V(ty...t;) C X ; dim X = n)

strict semistable : Y := X; is a strict normal crossings divisor :
Y =3 1<i<, Yi, Yiregular, irreducible

N=2Z/t"Z, { invertible on S ; RWA given by following th :



Theorem

(1) RUA = RUA (RVA tame)

(2) ROWA = Ay

(3)0 = Ay — @iy, - R'WA — 0

(4) NIRIWA 5 RIVA

(5) I = Gal(77/n) acts trivially on RIWA for all q, unipotently on
RWA.

Remarks
e RVA calculated by Grothendieck-Deligne (SGA 7 ) assuming
Grothendieck's absolute purity conjecture for divisor Y C X

e tameness and full calculation by Rapoport-Zink (1982)

e general absolute purity conjecture proved by Gabber (1994), new
proof in 2005

e generalization of theorem to log smooth case (Nakayama, 1998)

e simplified proof of tameness and purity conjecture (for Y C X) :
(1., 2004)



(5) I = Gal(7/n) acts unipotently on RWA

= existence of monodromy operator
N : RUA — RUA(-1)
(in D(Y,N)), satisfying N1 = 0, characterized by
o|RVA = exp(Nty(c) : RVA — RWA)

for o € I, where ty: | — Z;(1) = ¢-component of tame character

e explicit description of N by Rapoport-Zink, using ¢-adic variant of
Steenbrink’s double complex, and calculation of monodromy
filtration

e Calculation of monodromy filtration and other filtrations
associated with N, using perversity of RWA[n] (T. Saito, 2003),
applications to weight spectral sequence



Sketch of proof of (1) : tameness of RWA
Y =Xs=> Yisncdin X ; for x — Y geometric pt, define r(x)
= number of branches of Y through x,

r(X) = sup,,yr(x)

(1 <r(X) < +00)

Proof of tameness of RWA by induction on r(X). Assume tameness
holds for r(X) < r (reduction with at most r branches), wants to
prove it for r(X) =r+ 1.

WMA X = S[t1, - ,tn]/(t1 - - tr41 — 7), then (functoriality for
smooth maps) WMA

X =S[tr, - trp1]/(tr - try1 — 7).

Let
0=V(t1,  ,tr41) €Y



Induction assumption = RWA|Y — {0} tame. Want to show
(RVA) tame.

Define wild quotient RV, A by exact triangle
RV:AN — RVUA —» RV, A —

Then
RV, A = (RWV,A)o

and want to show (RV,,A)y = 0.

Key observation : semistable reduction with n branches can be
obtained from smooth map by successive blow up of smooth
divisors in special fiber



Let
Z = S[t1, -, trpa1]/(t1- -ty — ),

C:=V(ty, tr41) C Z,
and
7' =Ble(2) Lz
Then r(Z) = r, while r(Z'/S) =r+1

more precisely, if E = exceptional divisor, and xp € E =
intersection of strict transforms of t; = 0 for / < r, then

<r if X # xg
rz/(x) .
=r+1 ifx=x
= may replace (X,0) by (Z’, xo)
Use functoriality of RV for proper push forward by f : Z/ — Z, get
(RYx,wh)o = (RVz/wN)x, = (RE(RVZ: wA))f(xo) = (RVZwN)r(x0) = 0

by induction assumption



Review of absolute purity theorem

Let
i'Y —=X
closed immersion of everywhere codimension d, X, Y regular ;

N =12Z/nZ, ninvertible on X. Then : Grothendieck's absolute
purity conjecture is Gabber's theorem :

Theorem

Ri'Ax = Ay[—2d](—d)

q ] if g # 2d
HY(A)_{/\(—d) if g =2d

with (for Y connected)
N5 HO(Y 1Y (N)(d) = H¥ (X, A(d))

given by cohomology class of Y.



Mostly used through

Corollary
D=3 1<ic,snedin X, j: U=X~D — X, then

A ifg=20
RN\ = Di<i<r /\D,-(_l) ifg=1
NIRYj N ifg>1

with maps Ap,(—1) — RYj.A given by cohomology class of D;



Sketch of proof of (2) - (5)

Calculation on stalks. Replace X by strict localization at x € X.
WMA : X = S{t1,--- ,t,}/(t1--- t, — 7).

tameness =
(waA)X = Hq(X’V]H/\)

where n; = @1(” p)=1 n(7/") (maximal tame extension of 7)
Let U=X, =X —Y, Y =Xs=V(t;-t,), and
U= lm Uy /" U
(n,p)=1

the tame universal cover of U



Let Z:=2Z'(1) = Im(n p)=1 pn(k). Have fibrations

(*) U

A
V4

U<—X,,

Absolute purity = (*) cohomologically of the form

15 BZ1' 3 BZr - BZ -1

corresponding to split exact sequence

(**) 0— Zr—l 7" (mlv"',r&)—)Z m; 7 .0



Main point :
~ A ifg=0
H(0, ) :{ nd

0 ifg#0
(absolute purity = for g > 0 transition map of inductive system
Hq(U[til/", e 71.“,1/"],/\) are essentially zero)
Then :

HI (X, N) = HI(Z™1 A) = NTHY(Z7 1) N),

0= A=A — HYX,,,A) =0

my,-,Mmy)—=)p m;
( _>) >

(%) 02"tz Z 0.

split = Z (= I;) acts trivially on RIWA (X,, connected)



Bound on the unipotence exponent

Corollary

X /S semistable reduction, proper ; r(X) maximum number of
branches of Y = X, through a point. Foro € |,

(o = DM[HI(Xq5 A) =0
for N > inf(q + 1, r(X)).

Proof : Use :

e RIVA =0 for g > r(X)
eoc—1=0o0n RIVA

o HI( X7, N) = HI(Xs, RVA).



Variants with higher multiplicities

Th. generalized by Nakayama (1998) to log smooth map
f : X — S between fs log schemes. In particular, for X/S with
generalized semistable reduction, i. e. étale loc. of the form

X:S[th... ’tn]/(tfl...tar_ﬂ-)

r

with ged(p, a1, -+ ,a,) = 1. Again, RWA tame. However, | no
longer acts trivially on RIWA. In strictly local case, X, no longer
connected,

mo = mo(Xy,) = Coker(Z" — Z), (m;) — Y _ aim,
transitively permuted by Z(= I;), and
RIVA = A[mg] @ ATHY(Z™7L, ),

with action of / through 7o (regular representation). See also I.'s
Overview in Astérisque 279.



4.2 Isolated singularities

Theorem
S = strictly local trait ; X regular, flat, finite type over S, rel. dim
n, smooth outside closed point x € Xs. Then R®A|Xs — {x} =0
and

0 if

(ROIN), = q 7 n

AN ifg=n
Remark Assume k = k(s) alg. closed. If char(k) =0, or (more
generallly) RUA tame (i. e. R"®A tame), then

r=p=uX/S,x)

Milnor number of X/S at x, = dimT}(/S(x), e. g. for X/S

deduced from f : Z = AZ+1 — Al by localization, x = 0, f(0) =0,
then
p=dimOz ,/(0f /Oxo, - -+ , Of [ Oxpn).



In general :

Deligne-Milnor conjecture
w=r+sw(R"®A),

sw(R"®A) = Swan conductor, measuring wild ramification, = 0 in
tame case

proved by Deligne (SGA 7 XVI) if S of equal characteristic. Mixed
char. case still open.



4.3. Quadratic singularities (SGA 7 XV)

Assume k alg. closed.
Theorem
In previous th. assume x = ordinary quadratic singularity. Then
r=1,1 e
(R"®N) = A
ordinary quadratic singularity means :
e n=2m—1: X étale loc. near x isom. to
V( Z XiXitm + ) C AZ"
1<i<m

near {0} (7 = uniformizing parameter)
e n=2m: X étale loc. near x isom. to

V(X 1<icmXiXitm + Xomi1 +7) C AT if p>2

V(Zlgigm XiXi+m + X22m+1 + axXom+1 + 7T) C A%m_'_l if p= 2

near {0} (a € m, a> — 47 # 0).



Action of inertia / on R"®A :
e trivial if n odd

e through character ¢ of order 2 if n even, tame if p > 2.



For X /S proper, flat, rel. dim. n, having isolated singularities, i. e.
smooth outside finite ¥ C X,

ROA = Bxex (RPA)x
Specialization sequence for K = A
= H (X5, K| X5) B HI(Xg, K| Xg) — H (X5, ROK) — - -
boils down to interesting part
0 = H"(X5,A) B H' (X, A) 5 @, (R"ON), —

H™ (X, A) — H™ (X5, A) — 0.



e In isolated quadratic singularity case (and X smooth outside x),
knowledge of (R"®A), = A (non canonical) doesn't suffice to

calculate
@ H'(X5,\) = (R"®A).
Needs duality between (R"®A), and fo}(Xs, RWA), i. e. perfect
pairing
() Hig(Xs, RVA) @ (R"®A)c — A
and identification of a distinguished generator d, of H{’X}(X57 RWA)
defined up to sign, called the vanishing cycle at x, so that ¢ given
by N
(0x, pa) = Tr(0x.a)
(gx = image of &, in H"(Xs,\), Tr : H?"(Xs,\) — A = trace map,
Tate twists ignored)



e Knowledge of action of / on RIPA (or RIWA) does,n't suffice to
determine action of / on H"(Xz,\). For o € I, needs variation

Var(o) : (R™N)x — HIL (Xs, RUA)
factoring o — 1 :

H(Xs, \) —= (R"®A),

o—1 l Var(o) l

H(Xs, \) <—— H(Xs, )



For quadratic singularities, Var(o) given by Picard-Lefschetz
formula

_1yméx(9)-1 P
Var(o)a = ( 1) 2 <5X7 a>5x nc n 2m
(_1)m+1t£(0)<6ma>5x fn=2m-—1

ex |l — £1 tame if p > 2, defined by t> +at + 7 =0, if p=2
and local form of X near x is

V( Z XiXitm + Xomi1 + aXomi1 + ).
1<i<m
Proof of PL : @ SGA 7 XV : by transcendental argument and
comparison th. for n odd
e alg. proof : I. (2000), by reduction to semistable reduction with 2
branches.

PL : e key point in Grothendieck's semistable reduction theorem for
abelian varieties

e starting point of cohomological theory of Lefschetz pencils (=
Weil 1, 1)



5. Grothendieck's local monodromy theorem

Here A = Q.

Theorem

s — S <1 : henselian trait, k = k(s), p = char(k), { # p ;
I C Gal(7j/n) : the inertia group

X /S separated, finite type ; i € Z ;

Hi o HI(Xﬁ’ QK)
or Hz’:(Xﬁ7 QZ)

Then there exists an open subgroup | C I, independent of ¢, such
that

o € h = o|H" unipotent



History of the theorem

e Grothendieck (1967) gave 2 proofs of th. (without the
complement on independence on /¢, and only one being
unconditional) :

(1) arithmetic proof for H' = HL(Xz, Q/) (finiteness of H'(Xs, Q)
unknown at the time): unconditional, relying on Grothendieck's
local monodromy lemma

(2) geometric proof for p = 0, using resolution of singularities,
absolute purity (available thanks to Artin), and calculation of
RIWA in generalized semistable reduction case (and p = 0)

Grothendieck deduced from (2) : Milnor's quasi-unipotence
conjecture for monodromy of isolated singularities (/C)

e Deligne (1996), using de Jong's alterations, made proof (2) work
unconditionally, with complement on independence of ¢ (Berthelot's
Bourbaki exposé 815)



Sketch of arithmetic proof

e special case : k finitely generated (or radicial over field finitely
generated) over prime field

Then : H' = continuous, finite dimensional representation of
Gk = Gal(77/n). Apply Grothendieck's local monodromy lemma

e general case : reduce to special case by spreading out, using
Néron's desingularization, and generic constructibility for R'f, or
R'fi (SGA 711.3)



Sketch of geometric proof, using de Jong
o WMA S complete : if K = k(n), Gal(K/K) ~ Gal(K/K) (SGA
4 X 2.2.1) (S = Spec(R), K := Frac(R))

e Th. OK if X/S proper, semistable : (0 — 1) T}|H' =0

e Th. OK if X;, proper, smooth. Choose finite extension 7 /7 s. t.
components of X, are geometrically connected, replace X;, by
component Z of X, then apply de Jong's theorem (possible as S
complete) :

There exists : finite extension 7, of 7y,
alteration a: Z, — Z over np
proper semistable model X5/S, of Z, Sp = normalization of S in
2.
composition h: Zo > Z — Xy proper, generically finite, degree d
=

Q: — Rh.Q, = Q;
is multiplication by d ; = H'(Xgz, Q¢) = H'((X2)7, Q¢), OK by
first case (proper, semistable)



e general case for H. : use induction on dim(X, and de Jong
(over fields) to reduce to previous case

e general case for H' : use de Jong (over fields) and cohomological
descent to reduce to X, smooth, separated, then apply Poincaré
duality between H' and H29~" (d = dim(X;,))



6. The (-adic weight spectral sequence
6.1. Direct proof of perversity of RWA[n] in semistable case

s — S < 7 strictly local trait, X/S strict semistable reduction,
Y =Xs=>1<i<, Yisncd, AN=Z/¢"Z, dim(Y) =nasin 4.1

Y =X, 5 X & X,

RVA tame =
i*Rj.\ = RT (I, RUA)

(x)  EV=H'(l, RWA) = H™ (I, RWA) = "R A

concentrated on columns j =0, i = 1 as I, = Z/(1)



trivial action of / on RIWA =
HO(It, Rf\U/\) = H(I, Rj\IJ/\(l)) = RIWA, hence

(x)  EY=H'(l, RWA) = H™ (I, RWA) = i* RN
gives short exact sequences

0 — RIVA(q) — i*RITjA(g + 1) = RITIWA(g + 1) = 0,
spliced together into a resolution
(+) 0= Ay 5 *RYADL) S - & PR A0+ 1) — 0,

with 6 = cup product with tautological class in H(/;, A(1))



(+%) 0= Ay 2 *RYAD1) S - & *R™LA(n+1) >0,
absolute purity = (**) isomorphic to

(% % %) 0= Ay = ageh S % a.A 0,

where Y; = Njc, Y]

am: Y™ = H - Yy,

d = Cech differential. In particular, get resolution
(% * %) 0 — RIVA(q) = agsN — -+ — apsA = 0

dim(Y(™) = n— m = A[n— m] perverse on Y™ = a, .A[n— m]
perverse on Y = RIWA[n — g| perverse on Y

= RWA[n] perverse on Y, as predicted by Gabber's theorem.



6.2. Monodromy, kernel, and image filtrations

X/S asin 6.1, but A = Q. Recall monodromy operator
N : RUAN — RUA(-1)
(in D(Y,N)), satisfying N"*1 = 0 (n = dim(Y')), characterized by
o|RUA = exp(Nty(o) : RUA = RUA)

for o € I, where ty: | — Z;(1) = ¢-component of tame character.
As
RVA € Per(Y)[—n],

N is a (Tate twisted) nilpotent endomorphism of RWA in the
abelian category Per(Y)[—n]



hence N defines 3 filtrations on RVA :
e kernel filtration
Fi=KerN* 0=F 1CFC---CF,=RVA,
e image filtration
G=ImN, RUA=G*DG'>---DG"D 6™ =0,
e monodromy filtration
My= > FnG,
i—j=r

characterized by
N(Mk) C Mk,Q(—l)

and
N grMRUA =5 grM RUA(—k).
Associated graded given by
gr,iw RVA = @ gr";:grg RWA.
p—q=k



T. Saito (2003) explicitly determined :

e kernel filtration :
Fp = T<pRVA

(canonical truncation) ; in particular, grf = RPWA[—p]

e trace on grl’;— of image filtration : via the resolution

(5 % k) 0 — RPUA(p) = apsA — --- — an\ — 0,

qurg = (0 = apygsN = -+ = ap A = 0)(—p)
(naive filtration) (with a,«A in degree n)

e associated graded for monodromy filtration :

grpery = (apiq«N)—p — ql(—p)



Method of proof : use description of N given by Rapoport-Zink
bicomplex A®*®

Definition of A**® : choose complex
K=K’ KL...o K —...)

of A[Zy(1)]-modules on Y representing RWA. Choose topological
generator T of Z,(1). Then

RN S M :=s(K =" K)

(where s = associated simple complex). Define

K(1) =% %1) M(%)m
1T 0
K1 K M

L9 = (T>g+1M)(q + 1)[q + 1]

A =s(qg— A% =190 19 — L7)



A®*® contained in first quadrant :

L

A%9 (7>qr1M)(q + 1)[g + 1]
| J
A%t (m>2M)(2)[2]



with augmentation
e: K(= RVA) — A**
induced by 1® T : K — M(1)[1]. Exact sequences
(% * %) 0 —= RIVA(qg) = ags\ — -+ = anN = 0

= ¢ induces exact sequences on cohomology columns, hence an
isomorphism (in DT(Y,A[Z,(1)])

£ RUA 5 sA®®.

Advantage of A** : (for A = Qy)
N : RUA — RUA(—1) becomes visible :



N=({(T-1)®T").u,

u an automorphism. The nilpotent endomorphism
N:=(T—-1)®T":RUA - RUA(—1)

(TV € Zy(—1) dual of T), which makes sense for A = Z/¢*Z, is
induced from the endomorphism

v A o ACThet(1)),
v|AY := (—1)**1 canonical projection A"V — AI"1J+1(_1)
and monodromy filtration Mg RWA given by
M, RUA = sW,A** :=s(q — T<,+4A")

(sW, sometimes called (shifted) weight filtration)



6.3. The weight spectral sequence

X /S proper, strictly semistable, A = Q,

Filtration M, on RWA in Per(Y)[—n]

> quasi-filtration (or spectral object M, (jRWA) in DE(Y,N)
— spectral sequence

(+) EyY = HH(Y, gt RUA) = HH (X5, A),

called weight spectral sequence.

Alternate definition : (*) = spectral sequence of filtered complex

(sA**,sW,)



Recall
gr,yR\U/\ = @ grEgr‘éR\U/\,
p—q=k
grperg = (aprqN)[—p — ql(—p).

= in total degree m
Efr,m+r _ @qZO,r+q20Hm_r_2q(Y(r+l+2q)7 Qg)(—r _ q)

differential di = sum of restriction and Gysin maps ((Ei, d1)
depends only on Y)

(but (*) does depend on X, actually only on X ® R/(7?)
(Nakayama))



Arithmetic case

Assume S = Sy, strict localization of henselian trait
So — 50 < N0, and

(Y5 X & X)) =5 xs, (Yo% Xo & X,,)

with Xo/So proper, strict semistable, rel. dim. n. Then
G := Gal(7/no) acts on RWA, compatibly with action on Y

N is G-equivariant, and weight spectral sequence
(+) EyY = HH(Y, gt RUA) = HH (X5, A),

is G-equivariant.

Note : G acts on Ej through Go := Gal(k/ko).



6.4. Main results and conjectures

Theorem
The weight spectral sequence
(*)

Efr’err = @qzo,r+qonm_r_2q(Y(r+1+2q), Q¢)(—r—q) = H™(X7, Qu)
degenerates at Ep.

Indications on proof

e char(k) = 0 : reduce to X/S coming by localization from proper
map X’/S’, S’ = smooth curve /C, X’/S’ having strict semistable
reduction at s € S’. Use comparison theorem with RV C, and
Hodge theory :

El_”m+r . pure Hodge structure of weight
m—r—2q+2r+2qg=m-+r, hence
E< ™" . pure Hodge structure of weight m + r, hence

ds : EC7MT Es_rJrs’m"H_s"s_1 vanishes for s > 2



o ko =Fgq, X/5 =5 X5, (Xo/S0) as in arithmetic case. Let
F, € Gal(k/ko), aw~> a'/d
be the geometric Frobenius, and
F € Gal(1j/no) — Fq
a lifting. Then F defines an automorphism F* of RWQy, hence an
automorphism F* of the weight spectral sequence (x).

Deligne’'s Weil Il = :

forall 1 <s<oo, Ec"™ " is pure of weight m+r, i. e.
eigenvalues of F* are g-Weil numbers of weight m + r

(NB. as inertia / acts unipotently, eigenvalues of F* don't depend
on choice of lifting F of F)

= d;=0fors>2



e General case. Two (independent) proofs (by reduction to
arithmetic case)

- Nakayama (2000), using log geometry

- Ito (2005), using spreading out and Néron's desingularization
as in arithmetic proof of local monodromy theorem



The following is the so-called weight monodromy conjecture
Conjecture
Define M, := abutment filtration of (*). Then
I\7I.|Hm = monodromy filtration M, of nilpotent endomorphism N
of H™( Xz, Q).
(N : H* — H*(—1) defined by o|H* = exp(ty(c)N : H* — H*) for
oel)
Remark
Conjecture means :
N™: gr?’H’” 5 gr'f”,H’"(—r)

By definition, gry’H’" = EX"™" and by degeneration at £,

E—r,m—i—r _ E*r,erI’

00 - =2 :

Therefore, conjecture <

~

N™: Ey M S BT (<)



Recall : N
N = N.automorphism

N:=(T—-1)®T":RUA - RUA(—1)
(TV € Zy(—1) dual of T), induced by

v A o Ao,

v|A = (—1)"**1 canonical projection AV — A=1J+L( 1)

and
gryV'SA.’. = ®p—q=rap+q:\N(—p),

hence

NT - E;r,m+r ~ Elr,mfr(ir)'
Main difficulty : N'|Ey involves model X/S, not just special fibre Y

To explain the name weight monodromy conjecture, needs



Interlude : the weight filtration

s — S < n strict localization of
so — So < 1o : henselian trait, with kg = k(sp) = Fq4, ¢ # p

V : finite dimensional Q-representation of G = Gal(7j/np).

Recall : inertia | = Gal(7/n) acts quasi-unipotently on V : open
subgroup  C I acts unipotently (Grothendieck's monodromy
lemma). Implies :

Observation (Deligne) : Let F’, F” be liftings of Fy in G, and
AL A AT, S AT their sets of eigenvalues (in Qp).
Then there exist n > 1 s. t.

{)‘gln? T 7)‘,Nn} = {Xllnv T ’)‘/I(In}



Consider condition

(A) For a lifting F of F,, any eigenvalue A of F is a g-Weil number
(of weight w = w(\) € Z)

Observation = : does not depends on choice of F (as roots of
unity = g-Weil integers of weight 0)

Deligne [Weil I 1.7.5] :

Lemma
Assume V satisfies (A). Let

W(n/n) = {g € Gal(n/n) — F; € Gal(5/s),n € Z}

be the Weil group. Then there exists a unique W(7j/n)-stable finite
increasing filtration
WeV,

called the weight filtration, s. t. gr'V*V pure of weight n.



Arithmetic rephrasing of WMC

Xo/So proper, strictly semistable, X/S = S xs, (Xo/S0)-

Weil conjectures = all E; """

sequence satisfy (A). Moreover :

in weight monodromy spectral

MyH™ Gal(7j/n)-stable, and grf”' H™ pure of weight m+ r
(H™ = H™ (X5, Qe)).

= My_pH™ = weight filtration on H™, i. e. M, = Wintr

Hence : WMC < (weight filtration) = (shifted monodromy
filtration), i. e. WeH™ = Me_,,H™



Using de Jong's alterations, get :

Corollary
Let Zy/no proper and smooth, Z =1 Xy Zo, m € Z. Then :

(a) H™ = H™(Z5, Qq) satisfies (A).
(b) Assume WMC holds. Then :
Me_mH™ = weight filtration on H™, i. e. M,H™ = W, ,H™

where M, = monodromy filtration of nilpotent operator
N:H™ — H™(—1), 0 = exp(te(c)N) for o € suitable open I, C I.



History and status of WMC

WMC first appears in Deligne's Hodge |, §9, in the context of
Hodge theory, for projective smooth varieties over an open
disc, as a statement without proof. No proof given in Hodge
[, 1.

same context : proof given by Steenbrink (1975) for semistable
reduction case, but proof had a gap, found by ElZein

proof corrected independently by Deligne (unpublished) and
M. Saito in ([Modules de Hodge polarisables, RIMS 24, 1988],
4.2)

arithmetic case (ko finite), equal characteristic, WMC (in the
form of corollary) proved by Deligne (Weil 11, 1.8.4)



arithmetic case (ko finite), mixed characteristic, WMC proved
by Rapoport-Zink (1982) for dim(X;) <2

general equicharacteristic case : WMC proved by Ito (2005)

WMC proved for certain 3-folds X;;, or certain p-adically
uniformized varieties X,, : Ito (2004, 2005)

WMC proved for X, set-theoretic complete intersection in
projective space (or smooth toric projective variety) : Scholze
(2011), using perfectoid spaces to reduce to equicharacteristic
case



The local invariant cycle theorem

Notation and hypotheses of WMC.

Recall : nilpotent operator N : RUQ, — RVQy(—1) defines kernel
filtration

Fi=Ker Nt 0=F,CcFRC---CF,=RVQ,
hence + quasi-filtration (or spectral object Fj, g RWQy) in

D?(Y7 Qf)

— spectral sequence

(K1) E) = HH(Y, grf [RUQ,) = HH (X5, Qp),



Recall :
FRVQ, = TS;R\UQg

= up to renumbering,
(K1) E) = HH(Y, orf [RUQ)) = HH (X5, Qy),

= 2nd spectral sequence of hypercohomology of Y with value in
RVQ,

(K2) E} = HI(Y,RVQ) = HH(Y,RUQ,) = HH (X, Qp)

called spectral sequence of vanishing cycles



Corollary

Assume X satisfies WMC. Then (K1) (resp. (K2)) degenerates at
E> (resp. E3) and the abutment filtration is the kernel filtration :
for (K2) we have

F™"H™ = Ker N : H™ — H™(—r — 1)
Proof : (almost) formal from WMC (M. Saito-Zucker) : use

degeneration at E, of spectral sequence associated with filtration of
greRVQy cut-out by image filtration

As H™( X7, Qp)! = Ker(N : H™ — H™), get :

Corollary
Assume X satisfies WMC. Then :

(lic) Im(sp : H™(Xs, Qe — H™ (X7, Qr)) = H™ (X5, Qr)’

Formula (lic) is called local invariant cycle theorem.



Remark Independently of WMC, in the equal char. case, Deligne
(Weil 11, 3.6.1) proves the more general (lic) :

Theorem

S = strict localization at a closed point of smooth curve over an
alg. closed field k, X /S proper, s. t. X essentially smooth over k
and Xi /7 smooth. Then (lic) holds, i. e.

Im(sp : H™(Xs, Q¢) = H™ (X5, Q) = H™ (X, QZ)I



7. Further developments

Hodge theory of nearby cycles (Steenbrink, M. Saito, ...)
log nearby cycles (Kato, Nakayama, ...)

ramification, characteristic cycles, Euler-Poincaré formulas,
¢-adic Riemann-Roch (Deligne ; Laumon ; Abbes, T. Saito,
Kato, ...)

oriented products and nearby cycles over general bases
(Deligne ; Sabbah ; Orgogozo, Gabber, ...)



