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Abstract

A topos is a category which looks and behaves very much like the cat-
egory of sets, and so it may be thought of as a universe for mathematical
discourses. One of the very useful topoi in many branches of mathemat-
ics as well as in computer sciences is the topos MSet, of sets with an
action of a monoid on them. It is well known that MSet, being isomor-
phic to the functor category SetM , is a topos. Here, we explicitly give
the ingredients of a topos in MSet and investigate their properties for
the working scientists and computer scientists. Among other things, we
give some equivalent conditions, such as the left Ore condition, to Ω, the
subobject classifier of MSet, being a Stone algebra. Also the free and the
cofree objects, as well as, limits and colimits are discussed in MSet.

1 MSet is a topos

In this section, as the referee suggested, we first briefly introduce the notion of
a “topos”.

The study of topoi arises within category theory. A category may be thought
of in the first instance as a universe for a particular kind of mathematical dis-
courses. Such a universe is determined by specifying a certain kind of “objects”
and a certain kind of “arrows” that links different objects. The most general
universe of current mathematical discourse is the category Set of sets with func-
tions between them. Many basic properties of sets and set theoretic operations
can be described by reference to the arrows in Set, and these descriptions can be
interpreted in any category by means of its arrows. So the question that arises
is “when does a category look and behave like Set ?” A vague answer is “when
it is (at least) a topos”. The word “topos” (“place” or “site” in Greek) was
originally used by Alexander Grothendieck in a context of algebraic geometry.
So, a topos is informally a category which looks and behaves very much like the
category of sets.

A topos is formally a category which has finite limits, exponentiations (ab-
stracting the fuction set BA) and subobject classifier (abstracting the truth set
2 = {0, 1}). Recall that, for a category C with finite products, we say that

C has exponentiations (exponentials) if for every objects A and B, there is
an object BA together with an arrow ev : BA×A → B (called evaluation) such
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that for every arrow g : C × A → B there is a unique arrow ĝ : C → BA with
ev ◦ (ĝ × idA) = g.

We also say that C has subobject classifier if there exists an object Ω with
an arrow t : 1 → Ω (called the truth arrow) such that for every monomorphism
f : B → A there is a unique arrow χf : A → Ω (called the classifing arrow)
making the square

B
f−→ A

!
y ↓ χf

1 t−→ Ω

commutative.

Now, we formally introduce the category MSet and recall the proof of the
fact that it is actually a topos.

Recall that, for a monoid M with e as its identity, a (left) M -set is a set
X together with a function λ : M × X → X, called the action of M (or the
M -action) on X, such that for x ∈ X and m,n ∈ M (denoting λ(m,x) by mx)

i) ex = x
ii) (mn)x = m(nx).
In fact, an M-set is an algebra (X, (λm)m∈M ) where each λm : X → X is a

unary operation on X such that λe = idX , λm ◦ λn = λmn for each m,n ∈ M .
A morphism f : X → Y between M -sets X, Y is an equivariant map; i.e. for

x ∈ X, m ∈ M ,
f(mx) = mf(x).

Since idX and the composite of two equivariant maps are equivariant, we
have the category MSet of all M -sets and equivariant maps between them.

As a very interesting example, used in computer sciences as a convenient
mean of algebraic specification of process algebras (see [7, 8, 10]), consider the
monoid (IN∞, ·,∞), where IN is the set of natural numbers and IN∞ = IN∪{∞}
with n < ∞,∀n ∈ IN and m · n = min{m,n} for m,n ∈ N∞. Then an N∞-set
is called a projection algebra (see [7]).

1.1 Lemma Considering the monoid M as a category M with one object, the
category MSet is isomorphic to the functor category SetM .

Proof: Define Φ : SetM → MSet as follows. Let, for F : M → Set,
Φ(F ) = FM with the action mx = F (m)(x), for m ∈ M , x ∈ FM . For
any natural transformation τ : F → G in MSet, define Φ(τ) to be the only
component τM of τ . By the naturality of τ , one can see that τM is equivariant.

Conversely, define Ψ : MSet → SetM as follows. For an M -set X, define
Ψ(X) : M → Set to be the functor given by M ; X and (m : M → M) ;

(Ψ(m) : X → X) with Ψ(m)(x) = mx. Also, for each equivariant map f :
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X → Y , let Ψ(f) : Ψ(X) → Ψ(Y ) be the natural transformation whose only
component is f .

Now, one can easily check that Φ and Ψ are functors and ΦΨ=id, ΨΦ=id.
This proves the lemma.2

For a general case of the above lemma see 0.2.8. in [3].

1.2 Proposition For any monoid M , the category MSet is a topos.

proof: Since, for any (small) category C, the functor category SetC is a
topos, the proposition is just a corollary to the above lemma.2

2 Free and cofree objects in MSet

Here, we construct a left and a right adjoint to the forgetful functor U : MSet →
Set. For the general case of this see [4].

2.1 Lemma The forgetful functor U : MSet → Set has a left adjoint F :
Set → MSet.

Proof: Define F : Set → MSet by F (X) = M ×X with the action given
by s(m,x) = (sm, x), for s,m ∈ M , x ∈ X, and for any map f : X → Y in Set,
F (f) = id× f : M ×X → M × Y which is easily seen to be equivariant. That
F is actually a functor and a left adjoint to U is easily checked.2

The above lemma shows that free objects exits in MSet and M × X with
the action s(m,x) = (sm, x) is the free M -set on the set X.

2.2 Lemma The forgetful functor U : MSet → Set has a right adjoint.

Proof: Define H : Set → MSet by HX to be the set XM of all func-
tions from the set M to the set X, with the action of M on XM given by
(sf)(t) = f(ts), for f ∈ XM and s, t ∈ M . Also, for a function h : X → Y ,
define H(h) : XM → Y M by (Hh)(f) = hf , for f ∈ XM . That H is actually a
functor and a right adjoint to U is easily checked.2

3 Limits and Colimits in MSet

3.1 Limits Since MSet ∼= SetM , the category MSet is complete and limits
are calculated pointwise. In particular, the terminal object of MSet is the sin-
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gleton {0}, with the obvious M -action. Also, for M -sets A,B, their cartesian
product A×B with the M -action defined by m(a, b) = (ma,mb) is the product
of A and B in MSet.

3.2 Colimits Since any topos is finitely cocomplete, so is MSet. In fact, all
colimits in MSet exist and are calculated as in Set with a natural action of M
on them. In particular, ∅ with the empty action of M on it is the initial object
of MSet. Also, the coproduct of two M -sets A,B is their disjoint union

A ∪B = (A× {1}) ∪ (B × {2})

with the action of M on A ∪B defined by

m(a, 1) = (ma, 1) , m(b, 2) = (mb, 2)

for m ∈ M, a ∈ A, b ∈ B.

3.3 Monomorphisms Recall that in SetC , a morphism, that is a natural
transformation τ between functors is monic iff each of its components τA is
monic in Set. Therefore, a morphism τ = (τM ) is monic in SetM iff its only
component τM is monic in Set. Hence, Since MSet is isomorphic to SetM , a
morphism in MSet is monic iff it is a monic (one-one) map in Set.

3.4 Epimorphisms Consider the adjunction U a H, defined in 2.2. Since a
left adjoint preserves colimits, the functor U preserves epimorphisms. So, if f
is an epimorphism in MSet then Uf is an epimorphism in Set. But, epimor-
phisms in Set are exactly onto maps. Hence, Uf , and so f , is an onto map.
Thus, a morphism in MSet is epic iff it is an epic (onto) map in Set.

4 Ω in MSet

Here, we explicitly define the subobject classifier in the topos MSet and inves-
tigate its properties as a lattice.

Recall that, a sieve on the only object M of the category M is a subset S of
M which is closed under the left multiplication; i.e. mx ∈ S, for each m ∈ M
and each x ∈ S (See [9] or [12]). Thus a sieve on M is usually called a left
ideal of M . Hence, the set Siv(M) of sieves on M , is the set LM of all the left
ideals of M . Note that ∅ and M are the smallest and the largest ideals of M ,
respectively.

Thus, the subobject classifier Ω in SetM is given by Ω(M) = LM and, for
m : M → M (that is m ∈ M),

Ω(m)S = {x ∈ M | xm ∈ S}
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for S ∈ LM .
The truth map t : 1 → Ω is a natural transformation whose only component

tM : {0} → LM maps 0 to M , the largest left ideal of M . Also, the false map
f : 1 → Ω is given by fM (0) = ∅, the smallest left ideal of M .

Now, from the isomorphism Φ : SetM → MSet one gets that the subobject
classifier Ω in MSet is LM with the action of M on it given by “division”. That
is; for m ∈ M , S ∈ LM

mS = {x ∈ M : xm ∈ S}.

Then we clearly have
i) m∅ = ∅ and mM = M , for all m ∈ M ;
ii) eS = S, for all S ∈ Ω;
iii) mS = M iff m ∈ S, for each m ∈ M and S ∈ Ω;
iv) S = M iff e ∈ S, for each S ∈ Ω.

4.1 Lemma A monoid M is a group iff LM = {∅,M}.

Proof: Let M be a group and S 6= ∅ be a left ideal of M . Take x ∈ S, then
e = x−1x ∈ S, and hence S = M .

Conversely, let LM = {∅,M} and e 6= x ∈ M . Then Mx = {mx : m ∈ M} is
a non-empty left ideal of M . Hence, Mx = M . Thus e ∈ Mx. That is e = mx,
for some m ∈ M . That is x has a left inverse, and hence M is a group.2

4.2 Lemma Ω has exactly two global elements.

Proof: For any M -set A, a global element f : 1 → A is given by an
element k = f(0) of A which is fixed under the action of M . For, mk =
mf(0) = f(m0) = f(0) = k. Now, let f : 1 → Ω be a global element of Ω with
f(0) = K 6= ∅. Take x ∈ K. Since K is fixed under the action of M , xK = K.
That is,

K = {t ∈ M : tx ∈ K}

Thus, e ∈ xK = K. Hence K = M . This shows that Ω has exactly two global
elements t and f , given by t(0) = M and f(0) = ∅.2

The above lemma says that the topos MSet is bivalued.

4.3 Corollary The topos MSet is Boolean iff M is a group.

Proof: By lemma 4.1, M is a group iff Ω = {∅,M} in MSet. It is easily
shown that the coproduct 1

∐
1 is isomorphic to Ω iff Ω = {∅,M}. Thus we get

the result.2
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5 Ω as a lattice

For any monoid M , the power set ℘(M) of M with the same action of M as
given for Ω; that is

mB = {x ∈ M : xm ∈ B}

for m ∈ M , B ⊆ M , is a left M -set. In fact this M -set is isomorphic to the
M -set H2 given in lemma 2.2. Further, Ω is a sub-M -set and a sublattice of
℘(M).

In fact, Ω is a Heyting algebra with the operations

S ∧ T = S ∩ T , S ∨ T = S ∪ T , 0 = ∅ , 1 = m ,

S → T = {m ∈ M : mS ⊆ mT}

Thus, Ω is a pseudo-complemented subalgebra of ℘(M). The pseudo-complement
of S ∈ Ω is given by

S∗ = S → ∅ = {m ∈ M : mS ⊆ m∅ = ∅}
= {m ∈ M : (∀x ∈ M)(xm 6∈ S)} .

Note that, for any S ⊆ Ω, we have

S∗∗ = {m ∈ M : (∀x ∈ M)(xm 6∈ S∗)}
= {m ∈ M : (∀x ∈ M)(xmS 6⊆ ∅)}
= {m ∈ M : (∀x ∈ M)(∃y ∈ M)(yxm ∈ S)}

.

The following example shows that the equality S∗∗ ∪ S∗ = M is not true in
general, and hence Ω is not necessarily a Stone algebra.

5.1 Example If M = {e, a, b} with the operation given by xy = y, for y 6= e,
then {a} ∈ Ω, but

{a}∗ = {m ∈ M : m{a} = ∅} = {b}

{a}∗∗ = {m ∈ M : m{b} = ∅} = {a}

and so
{a}∗ ∪ {a}∗∗ = {a, b} 6= M.

We will give conditions on M under which Ω in MSet is a Stone algebra.
This is a special case of [13], for MSet.

5.2 Definition We say that the monoid M satisfies the (left) Ore condi-
tion if, for every m,n ∈ M , there exist s, t ∈ M such that sm = tn; that is
Mm ∩Mn 6= ∅.

5.3 Proposition For any monoid M , the following are equivalent in MSet.
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i) M satisfies the left Ore condition.
ii) Ω is a Stone algebra.
iii) S∗ = ∅, for every non-empty S ∈ Ω (one says that Ω is dense).

Proof: (i) ⇒ (ii): Let S ∈ Ω. If S = ∅, then clearly S∗∗ ∪ S∗ = M . Let
S 6= ∅, and n ∈ S. Let m ∈ M . Then by the hypothesis, for every x ∈ M
there exist s, t ∈ M such that s(xm) = tn. But, since S is a left ideal, tn ∈ S,
and hence sxm ∈ S, for all x ∈ M . Thus, by the definition of S∗∗,m ∈ S∗∗.
Therefore S∗∗ = M . Hence Ω is a Stone algebra.

(ii)⇒(iii): Let ∅ 6= S ∈ Ω. Since S∗∗ ∪ S∗ = M , we get that e ∈ S∗∗ or
e ∈ S∗. If e ∈ S∗, then S = ∅, a contradiction. So e ∈ S∗∗. Thus S∗∗ = M .
Hence, S∗ = S∗∗∗ = M∗ = ∅.

(iii)⇒(i): Let m,n ∈ M . Since Mm is a left ideal, by (iii), we get that
(Mm)∗ = ∅ and so n ∈ (Mm)∗∗. Hence, by the definition of (Mm)∗∗, we have
(xn)Mm 6= ∅, for every x ∈ M . In particular, for x = e, n(Mm) 6= ∅. That
is there exists t ∈ M such that, tn ∈ Mm. So, there exists s ∈ M such that
tn = sm.2

5.4 Proposition The following are equivalent in MSet.
(i) M satisfies the left Ore condition.
(ii) Ω is a Stone algebra.
(iii) S∗ = ∅, for all ∅ 6= S ∈ Ω.
(iv) S ∩ T = ∅ implies S = ∅ or T = ∅, for S, T ∈ Ω.
(v) (S ∩ T )∗ = S∗ ∪ T ∗, for S, T ∈ Ω.
(vi) (S ∪ T )∗∗ = S∗∗ ∪ T ∗∗, for S, T ∈ Ω.
(vii) Rg(Ω) = {S∗ : S ∈ Ω} is a sublattice of Ω.

6 Exponentiation in MSet

In this finall section, we discuss the exponentiation in the topos MSet. Recall
that for F,G in SetC , GF is defined by GF (U) = Hom(hU × F,G), for an
object U of C, and for a morphism α : U → V , GF (α) = Hom(hα × id,G)
which maps each η : hU ×F → G to η ◦ (hα× idF ), where hU and hα : hV → hU

as the usual ones. So, in prticular, for C = M , G : M → Set maps the only
object of M to Hom(hM × F,G), where hM (M) = M and, for each m ∈ M ,
G(m) = Hom(hm × id,G) maps η : hM × F → G to α = η ◦ (hm × id) which
is a natural transformation with only one component αM : M × FM → GM ,
given by αM (s, x) = ηM (sm, x). Now, by the isomorphism Φ : SetM ∼= MSet,
for M -sets A,B, we have

BA = HomMSet(M ×A,B)
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with the action given by

(mf)(s, a) = f(sm, a)

for m ∈ M , f ∈ BA.
Now we show that BA is actually the exponential of A and B in MSet.

6.1 Proposition For any A,B in MSet, BA as defined above is the exponen-
tiation of B to A in MSet.

Proof: To prove that the functor (−)A : MSet → MSet is a right adjoint
to the functor −×A : MSet → MSet, it is enough to see that

HomMSet(C ×A,B) ∼= HomMSet(C,BA)

for every M -sets A,B,C. Define

α : Hom(C ×A,B) → Hom(C,BA)

by [α(g)(x)](s, a) = g(sx, a), for g ∈ Hom(C ×A,B), x ∈ C, s ∈ M,a ∈ A; and

β : Hom(C,BA) → Hom(C ×A,B)

by β(f)(x, a) = f(x)(e, a), for f ∈ Hom(C,BA), x ∈ C, a ∈ A. Then α, β are
inverse of each other. The naturality in C,A,B is obvious.2

6.2 Corollary For any M -set B, we have

HomMSet(M,B) ∼= B

6.3 Corollary For any A in MSet, ΩA is isomorphic to Sub (M ×A), the set
of all subobjects of M ×A in MSet.

Proof: By the above proposition and the property of Ω, we have

ΩA = HomMSet(M ×A,Ω) ∼= Sub(M ×A)

where the above isomorphism is a bijection which can be made into an isomor-
phism in MSet, by defining the action of M on Sub(M ×A) as below:

sX = {(m,a) : (ms, a) ∈ X}

for s ∈ M , X ∈ Sub(M ×A).2

6.4 Remark Let X be a subobject of M × A. Then X is a subset of M × A
which is closed under the M -action. X, being a subset of M×A, can be written
as

X =
⋃

m∈M
{m} ×Xm
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where Xm = {a ∈ A : (m,a) ∈ X}. Since X is closed under the M -action, we
have

(m,a) ∈ X ⇒ (sm, sa) = s(m,a) ∈ X

for every s ∈ M . That is, for every s ∈ M ,

a ∈ Xm ⇒ sa ∈ Xsm

Thus, X can be identified by a family (Xm)m∈M where, for each m ∈ M , Xm

is a subset of A with

(∀s ∈ M)(a ∈ Xm ⇒ sa ∈ Xsm)

which is equivalent to X = (Xm)m∈M being in Ω iff

(∀s ∈ M)(sXm ⊆ Xsm)

where sXm = {sx : x ∈ Xm}. With this identification, the action of M on ΩA

is given by
sX = (Xms)m∈M

6.5 Remark If M is a group, and X = (Xm)m∈M ∈ ΩA then sXm = Xsm, for
s,m ∈ M . For, if a ∈ Xsm then (sm, a) ∈ X. So, (m, s−1a) = s−1(sm, a) ∈ X.
Thus s−1a ∈ Xm and hence a = s(s−1a) ∈ sXm. Therefore, Xsm ⊆ sXm.
The converse follows by the above remark. This, in particular, shows that
Xs = sXe, for every s ∈ M . Thus, any X in ΩA is completely determined by
Xe = {a ∈ A : (e, a) ∈ X}.

The following lemma can easily be proved.

6.6 Lemma For any M -set A, ΩA is a bounded lattice, with the operations
defined componentwise; i.e.

(Xm)m∈M ∨ (Ym)m∈M = (Xm ∪ Ym)m∈M

1 = (As)s∈M ; where As = A,∀s ∈ M

0 = (∅s)s∈M ; where ∅s = ∅,∀s ∈ M

(Xm)m∈M ∧ (Ym)m∈M = (Xm ∩ Ym)m∈M .2

6.7 Lemma If M is a group then, for any M-sets A and B, BA is isomor-
phic to HomSet(A,B) with the action (mg)(a) = mg(m−1a), for any function
g : A → B and m ∈ M,a ∈ A.

Proof: We know that BA = HomMSet(M ×A,B). Define

α : HomMSet(M ×A,B) → HomSet(A,B)
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by α(f)(a) = f(e, a), and

β : HomSet(A,B) → HomMSet(M ×A,B)

by β(g)(m,a) = mg(m−1a). The fact that α and β are equivariant, and
α ◦ β = id, β ◦ α = id is easily checked.2

6.8 Corollary If M is a group and A an M -set, then ΩA is isomorphic to
℘(A), where the action on ℘(A) is given by mY = {ma : a ∈ Y }, for m ∈ M
and Y ⊆ A.

Proof: By the above lemma, ΩA ∼= HomMSet(A,Ω). But, since M is a group,
Ω ∼= 2 . Hence

ΩA ∼= HomSet(A, 2 ) ∼= ℘(A).

In fact, this isomorphism maps X = (Xm)m∈M in ΩA to Xe, and is clearly
equivariant.2
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