The Category of *M*-sets

M. Mehdi Ebrahimi and M. Mahmoudi

Department of Mathematics Shahid Beheshti University Tehran 19839, Iran

Abstract

A topos is a category which looks and behaves very much like the category of sets, and so it may be thought of as a universe for mathematical discourses. One of the very useful topoi in many branches of mathematics as well as in computer sciences is the topos **MSet**, of sets with an action of a monoid on them. It is well known that **MSet**, being isomorphic to the functor category **Set**^M, is a topos. Here, we explicitly give the ingredients of a topos in **MSet** and investigate their properties for the working scientists and computer scientists. Among other things, we give some equivalent conditions, such as the left Ore condition, to Ω , the subobject classifier of **MSet**, being a Stone algebra. Also the free and the cofree objects, as well as, limits and colimits are discussed in **MSet**.

1 MSet is a topos

In this section, as the referee suggested, we first briefly introduce the notion of a "topos".

The study of topoi arises within category theory. A category may be thought of in the first instance as a universe for a particular kind of mathematical discourses. Such a universe is determined by specifying a certain kind of "objects" and a certain kind of "arrows" that links different objects. The most general universe of current mathematical discourse is the category **Set** of sets with functions between them. Many basic properties of sets and set theoretic operations can be described by reference to the arrows in **Set**, and these descriptions can be interpreted in any category by means of its arrows. So the question that arises is "when does a category look and behave like **Set** ?" A vague answer is "when it is (at least) a topos". The word "topos" ("place" or "site" in Greek) was originally used by Alexander Grothendieck in a context of algebraic geometry. So, a topos is informally a category which looks and behaves very much like the category of sets.

A topos is formally a category which has finite limits, exponentiations (abstracting the function set B^A) and subobject classifier (abstracting the truth set $\mathbf{2} = \{0, 1\}$). Recall that, for a category \mathcal{C} with finite products, we say that

 \mathcal{C} has exponentiations (exponentials) if for every objects A and B, there is an object B^A together with an arrow $ev: B^A \times A \to B$ (called *evaluation*) such that for every arrow $g: C \times A \to B$ there is a unique arrow $\hat{g}: C \to B^A$ with $ev \circ (\hat{g} \times id_A) = g$.

We also say that C has subobject classifier if there exists an object Ω with an arrow $t: \mathbf{1} \to \Omega$ (called the truth arrow) such that for every monomorphism $f: B \to A$ there is a unique arrow $\chi_f: A \to \Omega$ (called the classifing arrow) making the square

commutative.

Now, we formally introduce the category **MSet** and recall the proof of the fact that it is actually a topos.

Recall that, for a monoid M with e as its identity, a (left) M-set is a set X together with a function $\lambda : M \times X \to X$, called the action of M (or the M-action) on X, such that for $x \in X$ and $m, n \in M$ (denoting $\lambda(m, x)$ by mx) i) ex = x

ii) (mn)x = m(nx).

In fact, an *M*-set is an algebra $(X, (\lambda_m)_{m \in M})$ where each $\lambda_m : X \to X$ is a unary operation on X such that $\lambda_e = id_X$, $\lambda_m \circ \lambda_n = \lambda_{mn}$ for each $m, n \in M$.

A morphism $f: X \to Y$ between *M*-sets *X*, *Y* is an equivariant map; i.e. for $x \in X, m \in M$,

f(mx) = mf(x).

Since id_X and the composite of two equivariant maps are equivariant, we have the category **MSet** of all *M*-sets and equivariant maps between them.

As a very interesting example, used in computer sciences as a convenient mean of algebraic specification of process algebras (see [7, 8, 10]), consider the monoid $(\mathbb{N}^{\infty}, \cdot, \infty)$, where \mathbb{N} is the set of natural numbers and $\mathbb{N}^{\infty} = \mathbb{N} \cup \{\infty\}$ with $n < \infty, \forall n \in \mathbb{N}$ and $m \cdot n = \min\{m, n\}$ for $m, n \in N^{\infty}$. Then an N^{∞} -set is called a projection algebra (see [7]).

1.1 Lemma Considering the monoid M as a category M with one object, the category **MSet** is isomorphic to the functor category **Set**^M.

Proof: Define Φ : $\mathbf{Set}^M \to \mathbf{MSet}$ as follows. Let, for $F : M \to \mathbf{Set}$, $\Phi(F) = FM$ with the action mx = F(m)(x), for $m \in M, x \in FM$. For any natural transformation $\tau : F \to G$ in \mathbf{MSet} , define $\Phi(\tau)$ to be the only component τ_M of τ . By the naturality of τ , one can see that τ_M is equivariant.

component τ_M of τ . By the naturality of τ , one can see that τ_M is equivariant. Conversely, define $\Psi : \mathbf{MSet} \to \mathbf{Set}^M$ as follows. For an *M*-set *X*, define $\Psi(X) : M \to \mathbf{Set}$ to be the functor given by $M \rightsquigarrow X$ and $(m : M \to M) \rightsquigarrow (\Psi(m) : X \to X)$ with $\Psi(m)(x) = mx$. Also, for each equivariant map f: $X \to Y$, let $\Psi(f) : \Psi(X) \to \Psi(Y)$ be the natural transformation whose only component is f.

Now, one can easily check that Φ and Ψ are functors and $\Phi\Psi=id$, $\Psi\Phi=id$. This proves the lemma. \Box

For a general case of the above lemma see 0.2.8. in [3].

1.2 Proposition For any monoid M, the category **MSet** is a topos.

proof: Since, for any (small) category C, the functor category $\mathbf{Set}^{\mathcal{C}}$ is a topos, the proposition is just a corollary to the above lemma.

2 Free and cofree objects in MSet

Here, we construct a left and a right adjoint to the forgetful functor $U : \mathbf{MSet} \rightarrow \mathbf{Set}$. For the general case of this see [4].

2.1 Lemma The forgetful functor $U : \mathbf{MSet} \to \mathbf{Set}$ has a left adjoint $F : \mathbf{Set} \to \mathbf{MSet}$.

Proof: Define $F : \mathbf{Set} \to \mathbf{MSet}$ by $F(X) = M \times X$ with the action given by s(m, x) = (sm, x), for $s, m \in M, x \in X$, and for any map $f : X \to Y$ in **Set**, $F(f) = id \times f : M \times X \to M \times Y$ which is easily seen to be equivariant. That F is actually a functor and a left adjoint to U is easily checked. \Box

The above lemma shows that free objects exits in **MSet** and $M \times X$ with the action s(m, x) = (sm, x) is the free *M*-set on the set *X*.

2.2 Lemma The forgetful functor $U : \mathbf{MSet} \to \mathbf{Set}$ has a right adjoint.

Proof: Define $H : \mathbf{Set} \to \mathbf{MSet}$ by HX to be the set X^M of all functions from the set M to the set X, with the action of M on X^M given by (sf)(t) = f(ts), for $f \in X^M$ and $s, t \in M$. Also, for a function $h : X \to Y$, define $H(h) : X^M \to Y^M$ by (Hh)(f) = hf, for $f \in X^M$. That H is actually a functor and a right adjoint to U is easily checked. \Box

3 Limits and Colimits in MSet

3.1 Limits Since $\mathbf{MSet} \cong \mathbf{Set}^M$, the category \mathbf{MSet} is complete and limits are calculated pointwise. In particular, the terminal object of \mathbf{MSet} is the sin-

gleton $\{0\}$, with the obvious *M*-action. Also, for *M*-sets *A*, *B*, their cartesian product $A \times B$ with the *M*-action defined by m(a, b) = (ma, mb) is the product of *A* and *B* in **MSet**.

3.2 Colimits Since any topos is finitely cocomplete, so is **MSet**. In fact, all colimits in **MSet** exist and are calculated as in **Set** with a natural action of M on them. In particular, \emptyset with the empty action of M on it is the initial object of **MSet**. Also, the coproduct of two M-sets A, B is their disjoint union

$$A \cup B = (A \times \{1\}) \cup (B \times \{2\})$$

with the action of M on $A \cup B$ defined by

$$m(a, 1) = (ma, 1)$$
, $m(b, 2) = (mb, 2)$

for $m \in M$, $a \in A$, $b \in B$.

3.3 Monomorphisms Recall that in $\mathbf{Set}^{\mathcal{C}}$, a morphism, that is a natural transformation τ between functors is monic iff each of its components τ_A is monic in **Set**. Therefore, a morphism $\tau = (\tau_M)$ is monic in \mathbf{Set}^M iff its only component τ_M is monic in **Set**. Hence, Since \mathbf{MSet} is isomorphic to \mathbf{Set}^M , a morphism in \mathbf{MSet} is monic iff it is a monic (one-one) map in \mathbf{Set} .

3.4 Epimorphisms Consider the adjunction $U \dashv H$, defined in 2.2. Since a left adjoint preserves colimits, the functor U preserves epimorphisms. So, if f is an epimorphism in **MSet** then Uf is an epimorphism in **Set**. But, epimorphisms in **Set** are exactly onto maps. Hence, Uf, and so f, is an onto map. Thus, a morphism in **MSet** is epic iff it is an epic (onto) map in **Set**.

4 Ω in MSet

Here, we explicitly define the subobject classifier in the topos **MSet** and investigate its properties as a lattice.

Recall that, a sieve on the only object M of the category M is a subset S of M which is closed under the left multiplication; i.e. $mx \in S$, for each $m \in M$ and each $x \in S$ (See [9] or [12]). Thus a sieve on M is usually called a **left ideal** of M. Hence, the set Siv(M) of sieves on M, is the set L_M of all the left ideals of M. Note that \emptyset and M are the smallest and the largest ideals of M, respectively.

Thus, the subobject classifier Ω in \mathbf{Set}^M is given by $\Omega(M) = L_M$ and, for $m: M \to M$ (that is $m \in M$),

$$\Omega(m)S = \{x \in M \mid xm \in S\}$$

for $S \in L_M$.

The truth map $t: 1 \to \Omega$ is a natural transformation whose only component $t_M: \{0\} \to L_M$ maps 0 to M, the largest left ideal of M. Also, the false map $f: 1 \to \Omega$ is given by $f_M(0) = \emptyset$, the smallest left ideal of M.

Now, from the isomorphism $\Phi : \mathbf{Set}^M \to \mathbf{MSet}$ one gets that the subobject classifier Ω in \mathbf{MSet} is L_M with the action of M on it given by "division". That is; for $m \in M, S \in L_M$

$$mS = \{ x \in M : xm \in S \}.$$

Then we clearly have

- i) $m\emptyset = \emptyset$ and mM = M, for all $m \in M$;
- ii) eS = S, for all $S \in \Omega$;
- iii) mS = M iff $m \in S$, for each $m \in M$ and $S \in \Omega$;
- iv) S = M iff $e \in S$, for each $S \in \Omega$.

4.1 Lemma A monoid M is a group iff $L_M = \{\emptyset, M\}$.

Proof: Let M be a group and $S \neq \emptyset$ be a left ideal of M. Take $x \in S$, then $e = x^{-1}x \in S$, and hence S = M.

Conversely, let $L_M = \{\emptyset, M\}$ and $e \neq x \in M$. Then $Mx = \{mx : m \in M\}$ is a non-empty left ideal of M. Hence, Mx = M. Thus $e \in Mx$. That is e = mx, for some $m \in M$. That is x has a left inverse, and hence M is a group. \Box

4.2 Lemma Ω has exactly two global elements.

Proof: For any *M*-set *A*, a global element $f : 1 \to A$ is given by an element k = f(0) of *A* which is fixed under the action of *M*. For, mk = mf(0) = f(m0) = f(0) = k. Now, let $f : 1 \to \Omega$ be a global element of Ω with $f(0) = K \neq \emptyset$. Take $x \in K$. Since *K* is fixed under the action of *M*, xK = K. That is,

$$K = \{t \in M : tx \in K\}$$

Thus, $e \in xK = K$. Hence K = M. This shows that Ω has exactly two global elements t and f, given by t(0) = M and $f(0) = \emptyset$. \Box

The above lemma says that the topos **MSet** is bivalued.

4.3 Corollary The topos **MSet** is Boolean iff M is a group.

Proof: By lemma 4.1, M is a group iff $\Omega = \{\emptyset, M\}$ in **MSet**. It is easily shown that the coproduct $1 \coprod 1$ is isomorphic to Ω iff $\Omega = \{\emptyset, M\}$. Thus we get the result. \Box

5 Ω as a lattice

For any monoid M, the power set $\wp(M)$ of M with the same action of M as given for Ω ; that is

$$mB = \{x \in M : xm \in B\}$$

for $m \in M$, $B \subseteq M$, is a left *M*-set. In fact this *M*-set is isomorphic to the *M*-set *H*2 given in lemma 2.2. Further, Ω is a sub-*M*-set and a sublattice of $\wp(M)$.

In fact, Ω is a Heyting algebra with the operations

$$S \wedge T = S \cap T , \ S \vee T = S \cup T , \ 0 = \emptyset , \ 1 = m ,$$
$$S \to T = \{m \in M : mS \subseteq mT\}$$

Thus, Ω is a pseudo-complemented subalgebra of $\wp(M)$. The pseudo-complement of $S \in \Omega$ is given by

$$S^* = S \to \emptyset = \{ m \in M : mS \subseteq m\emptyset = \emptyset \} \\= \{ m \in M : (\forall x \in M)(xm \notin S) \}$$

Note that, for any $S \subseteq \Omega$, we have

$$S^{**} = \{ m \in M : (\forall x \in M)(xm \notin S^*) \}$$

= $\{ m \in M : (\forall x \in M)(xmS \notin \emptyset) \}$
= $\{ m \in M : (\forall x \in M)(\exists y \in M)(yxm \in S) \}$

The following example shows that the equality $S^{**} \cup S^* = M$ is not true in general, and hence Ω is not necessarily a Stone algebra.

5.1 Example If $M = \{e, a, b\}$ with the operation given by xy = y, for $y \neq e$, then $\{a\} \in \Omega$, but

$$\{a\}^* = \{m \in M : m\{a\} = \emptyset\} = \{b\}$$
$$\{a\}^{**} = \{m \in M : m\{b\} = \emptyset\} = \{a\}$$

and so

$$\{a\}^* \cup \{a\}^{**} = \{a, b\} \neq M.$$

We will give conditions on M under which Ω in **MSet** is a Stone algebra. This is a special case of [13], for **MSet**.

5.2 Definition We say that the monoid M satisfies the (left) **Ore condition** if, for every $m, n \in M$, there exist $s, t \in M$ such that sm = tn; that is $Mm \cap Mn \neq \emptyset$.

5.3 Proposition For any monoid M, the following are equivalent in MSet.

- i) M satisfies the left Ore condition.
- ii) Ω is a Stone algebra.
- iii) $S^* = \emptyset$, for every non-empty $S \in \Omega$ (one says that Ω is dense).

Proof: (i) \Rightarrow (ii): Let $S \in \Omega$. If $S = \emptyset$, then clearly $S^{**} \cup S^* = M$. Let $S \neq \emptyset$, and $n \in S$. Let $m \in M$. Then by the hypothesis, for every $x \in M$ there exist $s, t \in M$ such that s(xm) = tn. But, since S is a left ideal, $tn \in S$, and hence $sxm \in S$, for all $x \in M$. Thus, by the definition of $S^{**}, m \in S^{**}$. Therefore $S^{**} = M$. Hence Ω is a Stone algebra.

(ii) \Rightarrow (iii): Let $\emptyset \neq S \in \Omega$. Since $S^{**} \cup S^* = M$, we get that $e \in S^{**}$ or $e \in S^*$. If $e \in S^*$, then $S = \emptyset$, a contradiction. So $e \in S^{**}$. Thus $S^{**} = M$. Hence, $S^* = S^{***} = M^* = \emptyset$.

(iii) \Rightarrow (i): Let $m, n \in M$. Since Mm is a left ideal, by (iii), we get that $(Mm)^* = \emptyset$ and so $n \in (Mm)^{**}$. Hence, by the definition of $(Mm)^{**}$, we have $(xn)Mm \neq \emptyset$, for every $x \in M$. In particular, for x = e, $n(Mm) \neq \emptyset$. That is there exists $t \in M$ such that, $tn \in Mm$. So, there exists $s \in M$ such that $tn = sm.\square$

5.4 Proposition The following are equivalent in **MSet**.

- (i) M satisfies the left Ore condition.
- (ii) Ω is a Stone algebra.
- (iii) $S^* = \emptyset$, for all $\emptyset \neq S \in \Omega$.
- (iv) $S \cap T = \emptyset$ implies $S = \emptyset$ or $T = \emptyset$, for $S, T \in \Omega$.
- (v) $(S \cap T)^* = S^* \cup T^*$, for $S, T \in \Omega$.
- (vi) $(S \cup T)^{**} = S^{**} \cup T^{**}$, for $S, T \in \Omega$.
- (vii) $Rg(\Omega) = \{S^* : S \in \Omega\}$ is a sublattice of Ω .

6 Exponentiation in MSet

In this finall section, we discuss the exponentiation in the topos **MSet**. Recall that for F, G in $\mathbf{Set}^{\mathcal{C}}$, G^{F} is defined by $G^{F}(U) = Hom(h_{U} \times F, G)$, for an object U of \mathcal{C} , and for a morphism $\alpha : U \to V$, $G^{F}(\alpha) = Hom(h_{\alpha} \times id, G)$ which maps each $\eta : h_{U} \times F \to G$ to $\eta \circ (h_{\alpha} \times id_{F})$, where h_{U} and $h_{\alpha} : h_{V} \to h_{U}$ as the usual ones. So, in prticular, for $\mathcal{C} = M$, $G : M \to \mathbf{Set}$ maps the only object of M to $Hom(h_{M} \times F, G)$, where $h_{M}(M) = M$ and, for each $m \in M$, $G(m) = Hom(h_{m} \times id, G)$ maps $\eta : h_{M} \times F \to G$ to $\alpha = \eta \circ (h_{m} \times id)$ which is a natural transformation with only one component $\alpha_{M} : M \times FM \to GM$, given by $\alpha_{M}(s, x) = \eta_{M}(sm, x)$. Now, by the isomorphism $\Phi : \mathbf{Set}^{M} \cong \mathbf{MSet}$, for M-sets A, B, we have

$$B^A = Hom_{\mathbf{MSet}}(M \times A, B)$$

with the action given by

$$(mf)(s,a) = f(sm,a)$$

for $m \in M, f \in B^A$.

Now we show that B^A is actually the exponential of A and B in **MSet**.

6.1 Proposition For any A, B in **MSet**, B^A as defined above is the exponentiation of B to A in **MSet**.

Proof: To prove that the functor $(-)^A : \mathbf{MSet} \to \mathbf{MSet}$ is a right adjoint to the functor $- \times A : \mathbf{MSet} \to \mathbf{MSet}$, it is enough to see that

 $Hom_{\mathbf{MSet}}(C \times A, B) \cong Hom_{\mathbf{MSet}}(C, B^A)$

for every M-sets A, B, C. Define

 $\alpha: Hom(C \times A, B) \to Hom(C, B^A)$

by
$$[\alpha(g)(x)](s, a) = g(sx, a)$$
, for $g \in Hom(C \times A, B), x \in C, s \in M, a \in A$; and
 $\beta : Hom(C, B^A) \to Hom(C \times A, B)$

by $\beta(f)(x,a) = f(x)(e,a)$, for $f \in Hom(C, B^A), x \in C, a \in A$. Then α, β are inverse of each other. The naturality in C, A, B is obvious.

6.2 Corollary For any M-set B, we have

 $Hom_{\mathbf{MSet}}(M, B) \cong B$

6.3 Corollary For any A in **MSet**, Ω^A is isomorphic to Sub $(M \times A)$, the set of all subobjects of $M \times A$ in **MSet**.

Proof: By the above proposition and the property of Ω , we have

$$\Omega^A = Hom_{\mathbf{MSet}}(M \times A, \Omega) \cong Sub(M \times A)$$

where the above isomorphism is a bijection which can be made into an isomorphism in **MSet**, by defining the action of M on $Sub(M \times A)$ as below:

$$sX = \{(m, a) : (ms, a) \in X\}$$

for $s \in M, X \in Sub(M \times A).\square$

6.4 Remark Let X be a subobject of $M \times A$. Then X is a subset of $M \times A$ which is closed under the *M*-action. X, being a subset of $M \times A$, can be written as

$$X = \bigcup_{m \in M} \{m\} \times X_m$$

where $X_m = \{a \in A : (m, a) \in X\}$. Since X is closed under the M-action, we have

$$(m,a) \in X \Rightarrow (sm,sa) = s(m,a) \in X$$

for every $s \in M$. That is, for every $s \in M$,

$$a \in X_m \Rightarrow sa \in X_{sn}$$

Thus, X can be identified by a family $(X_m)_{m \in M}$ where, for each $m \in M$, X_m is a subset of A with

$$(\forall s \in M) (a \in X_m \Rightarrow sa \in X_{sm})$$

which is equivalent to $X = (X_m)_{m \in M}$ being in Ω iff

$$(\forall s \in M)(sX_m \subseteq X_{sm})$$

where $sX_m = \{sx : x \in X_m\}$. With this identification, the action of M on Ω^A is given by

$$sX = (X_{ms})_{m \in M}$$

6.5 Remark If M is a group, and $X = (X_m)_{m \in M} \in \Omega^A$ then $sX_m = X_{sm}$, for $s, m \in M$. For, if $a \in X_{sm}$ then $(sm, a) \in X$. So, $(m, s^{-1}a) = s^{-1}(sm, a) \in X$. Thus $s^{-1}a \in X_m$ and hence $a = s(s^{-1}a) \in sX_m$. Therefore, $X_{sm} \subseteq sX_m$. The converse follows by the above remark. This, in particular, shows that $X_s = sX_e$, for every $s \in M$. Thus, any X in Ω^A is completely determined by $X_e = \{a \in A : (e, a) \in X\}$.

The following lemma can easily be proved.

6.6 Lemma For any M-set A, Ω^A is a bounded lattice, with the operations defined componentwise; i.e.

$$(X_m)_{m \in M} \lor (Y_m)_{m \in M} = (X_m \cup Y_m)_{m \in M}$$

$$1 = (A_s)_{s \in M}; \text{ where } A_s = A, \forall s \in M$$

$$0 = (\emptyset_s)_{s \in M}; \text{ where } \emptyset_s = \emptyset, \forall s \in M$$

$$(X_m)_{m \in M} \land (Y_m)_{m \in M} = (X_m \cap Y_m)_{m \in M}.\square$$

6.7 Lemma If M is a group then, for any M-sets A and B, B^A is isomorphic to $Hom_{\mathbf{Set}}(A, B)$ with the action $(mg)(a) = mg(m^{-1}a)$, for any function $g: A \to B$ and $m \in M, a \in A$.

Proof: We know that $B^A = Hom_{\mathbf{MSet}}(M \times A, B)$. Define

$$\alpha: Hom_{\mathbf{MSet}}(M \times A, B) \to Hom_{\mathbf{Set}}(A, B)$$

by $\alpha(f)(a) = f(e, a)$, and

$$\beta : Hom_{\mathbf{Set}}(A, B) \to Hom_{\mathbf{MSet}}(M \times A, B)$$

by $\beta(g)(m,a) = mg(m^{-1}a)$. The fact that α and β are equivariant, and $\alpha \circ \beta = id, \beta \circ \alpha = id$ is easily checked. \Box

6.8 Corollary If M is a group and A an M-set, then Ω^A is isomorphic to $\wp(A)$, where the action on $\wp(A)$ is given by $mY = \{ma : a \in Y\}$, for $m \in M$ and $Y \subseteq A$.

Proof: By the above lemma, $\Omega^A \cong Hom_{\mathbf{MSet}}(A, \Omega)$. But, since M is a group, $\Omega \cong \mathcal{Z}$. Hence

$$\Omega^A \cong Hom_{\mathbf{Set}}(A, 2) \cong \wp(A).$$

In fact, this isomorphism maps $X = (X_m)_{m \in M}$ in Ω^A to X_e , and is clearly equivariant. \Box

References

- J. Adamek and H. Herrlich and G.E.Strecker, Abstract and Concrete Categories, John Wiley and Sons, Inc. (1990).
- R. Balbes and P. Dwinger, *Distributive Lattices*, University of Missouri Press, (1975).
- M. Mehdi Ebrahimi, Algebra in a Topos of Sheaves, Doctoral dissertation, McMaster University (1980).
- M. Mehdi Ebrahimi, Algebra in a Grothendieck Topos: Injectivity in Quasi-Equational Classes, Journal of Pure and Applied Algebra 26 1982, 269-280.
- M. Mehdi Ebrahimi, Internal Completeness and Injectivity of Boolean Algebras in the Topos of M-sets, Bull. Austral. Math. Vol. 41, No. 2, 1990, 323-332.
- M. Mehdi Ebrahimi and M. Mahmoudi, When is the Category of Separated M-sets a Quasitopos or a Topos ?, Bulletin of the Iranian Mathematical Society, Vol. 21, No. 1, 1995, 25-33.
- H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, and M. Grosse-Rhode, Algebraic Data Type and Process Specifications based on Projection Spaces, Lecture Notes in Computer Science 332 1988, 23-43.
- H. Ehrig, F. Parisi-Presicce, P. Bohem, C. Rieckhoff, C. Dimitrovici, and M. Grosse-Rhode, *Combining Data Type and Recursive Process Specifications using Projection Algebras*, Theoretical Computer Science **71**, 1990, 347-380.

- 9. R. Goldblatt, *Topoi: The Categorial Analysis of Logic*, Elsevier Science Publishers, (1986).
- Grosse-Rhode, Parametrized Data Type and Process Specifications using Projection algebras, Lecture Notes in Computer Science 393, 1988, 185-197.
- 11. H. Herrlich and H. Ehrig, *The Construct* **PRO** of *Projection Spaces: its Internal Structure*, Lecture Notes in Computer Science **393**, 1988, 286-293.
- 12. P. T. Johnstone, Topos Theory, Academic press (1977).
- P. T. Johnstone, Conditions related to De Morgan's law, Lecture Notes in Mathematics 753, 1977, 479-491.