Cohomología Weil-étale para n < 0

Alexey Beshenov

(Centro de Investigación en Matemáticas, México)

09/02/2021

Seminario de la teoría de números UAM-ICMAT

Plan de charla

- 1. **Motivación**: funciones zeta aritméticas, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

Motivación (motívica)

Funciones zeta aritméticas y sus valores especiales

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

$$X \sim \zeta(X, s) = \prod_{\substack{X \in X \\ \text{cerrado}}} \frac{1}{1 - \#\kappa(x)^{-s}}$$

- ▶ Convergencia para $s > \dim X$.
- ► Conjetura: prolongación meromorfa a $s \in \mathbb{C}$, ecuación funcional $\zeta(X,s) \leftrightarrow \zeta(X,\dim X s)$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

Ejemplos extensivamente estudiados

► Función zeta de Dedekind (siglo XIX). F/\mathbb{Q} cuerpo de números, $\mathcal{O}_F \subset F$ anillo de enteros.

$$\zeta_F(s) := \zeta(\operatorname{\mathsf{Spec}} \mathcal{O}_F, s) \overset{\mathsf{Euler}}{=} \sum_{0 \neq \mathfrak{a} \subset \mathcal{O}_F} \frac{1}{\# (\mathcal{O}_F/\mathfrak{a})^s}.$$

E.g.
$$\zeta_{\mathbb{O}}(s) = \zeta(\operatorname{Spec} \mathbb{Z}, s) = \zeta(s)$$
.

► Función zeta de Hasse–Weil (siglo XX). X/\mathbb{F}_a variedad sobre cuerpo finito.

$$Z(X,t) := \exp\left(\sum_{k\geq 1} rac{\#X(\mathbb{F}_{q^k})}{k} t^k
ight) \stackrel{\mathsf{Dwork}}{\in} \mathbb{Q}(t).$$

$$\zeta(X,s)=Z(X,q^{-s}).$$

Conjeturas de Weil (Grothendieck, Deligne, ...)

Fórmula del número de clases (Dirichlet)

- ightharpoonup s=0.

- ► Similar para curvas proyectivas lisas X/\mathbb{F}_q : ord_{s=0} $\zeta(X,s) = -1$ y $\zeta^*(X,0) = \frac{\# \operatorname{Pic}^0(X)}{g-1}$.
- ► ¿Generalizaciones?

Cohomología motívica étale

- ▶ Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ▶ Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}} = \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}.$$

- Pocos cálculos explícitos disponibles.
- ▶ Generación finita ???

Conjetura cohomológica de Lichtenbaum

- ightharpoonup n < 0.
- $\mathbb{Z}^{c}(0) = \mathbb{G}_{m}[1],$ $\zeta_{F}^{*}(0) = -\frac{\#H^{1}(X_{\acute{e}t}, \mathbb{G}_{m})}{\#H^{0}(X_{\acute{e}t}, \mathbb{G}_{m})_{tors}} R_{F} = -\frac{\#H^{0}(X_{\acute{e}t}, \mathbb{Z}^{c}(0))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^{c}(0))_{tors}} R_{F}.$
- ▶ Conjetura: para $n \le 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ► En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum, 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \text{vol coker}\Big(\underbrace{H^{-1}(X_{\acute{et}},\mathbb{Z}^c(n))}_{\text{rk}_{\mathbb{Z}}=d_n} o \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}},X(\mathbb{C}),\mathbb{R}(n))}_{\dim_{\mathbb{R}}=d_n}\Big).$$

▶ Teorema para F/\mathbb{Q} abeliano (¡mediante TNC!).

Cohomología Weil-étale

Estructura de la cohomología motívica para X/\mathbb{Z} (Lichtenbaum)

Conjeturalmente (!)

$$H^i(X_{cute{e}t},\mathbb{Z}^c(n)) = egin{cases} ext{finitamente generado}, & i \leq -2n, \ ext{finito}, & i = -2n+1, \ ext{tipo cofinito}, & i \geq -2n+2. \end{cases}$$

- ► Tipo cofinito = Q/Z-dual a finitamente generado. Manifestación de dualidad aritmética (Artin-Verdier, ...).
- ▶ * si n < 0, entonces $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados.
- ► Conjetura de Beilinson–Soulé: $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n)) = 0$ para $i < -2 \dim X$.
- ► En general, $H^i(X_{\acute{e}t},\mathbb{Z}^c(n)) \neq 0$ para $i \gg 0$.

Estructura de la cohomología motívica para X/\mathbb{F}_q (Lichtenbaum)

► Conjeturalmente (!)

$$H^i(X_{\acute{et}},\mathbb{Z}^c(n)) = egin{cases} ext{finito}, & i
eq -2n, \, -2n+2, \ ext{finitamente generado}, & i = -2n, \ ext{tipo cofinito}, & i = -2n+2. \end{cases}$$

▶ * si n < 0, entonces $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitos.

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- Grupos Hⁱ_{W,c}(X, Z(n)) finitamente generados, nulos para i ≫ 0.
- Sucesión exacta

$$\cdots \to H^i_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \to \cdots$$

► $H^i_{W,c}(X,\mathbb{Z}(n))$ codifica $\operatorname{ord}_{s=n} \zeta(X,s)$ y $\zeta^*(X,n)$. (¡Detalles más adelante!)

Algunos resultados

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ► Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ► Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

Mi trabajo

Complejos Weil-étale

- ▶ $X \rightarrow \operatorname{Spec} \mathbb{Z}$ separado, de tipo finito, n < 0.
- Asumamos $\mathbf{L}^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$.
- ► Existe complejo $R\Gamma_{W,c}(X,\mathbb{Z}(n))$.
- ► $H^i_{W,c}(X,\mathbb{Z}(n))$ son finitamente generados, nulos para $i \notin [0, 2 \dim X + 1]$.
- ► Se escinde con coeficientes racionales/reales:

$$RF_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R}\cong egin{array}{c} R ext{Hom}(R\Gamma(X_{lpha t},\mathbb{Z}^c(n)),\mathbb{R})[-1] \ \oplus \ R\Gamma_c(G_\mathbb{R},X(\mathbb{C}),\mathbb{R}(n))[-1] \end{array}$$

 $ightharpoonup \mathbb{R}(n) := (2\pi i)^n \mathbb{R}, G_{\mathbb{R}} := \operatorname{Gal}(\mathbb{C}/\mathbb{R}).$

Ingrediente principal de la construcción

Dualidad aritmética

$$\mathsf{Hom}(\underbrace{H^{2-i}(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\mathsf{finitamente generado}},\mathbb{Q}/\mathbb{Z}) \cong \underbrace{\widehat{\mathcal{H}}^i_c(X_{\acute{e}t},\mathbb{Z}'(n))}_{\mathsf{tipo \ cofinito}},$$

- $\mathbb{Z}'(n) = \mathbb{Q}/\mathbb{Z}'(n)[-1] = \bigoplus_{p} \varinjlim_{r} j_{p!} \mu_{p^{r}}^{\otimes n}[-1],$ $j_{p} \colon X[1/p] \hookrightarrow X.$
- $ightharpoonup \widehat{H}_c^i$ = cohomología modificada, toma en cuenta $X(\mathbb{R})$.
- ▶ Generalización de la dualidad de Artin-Verdier para $X = \operatorname{Spec} \mathcal{O}_F$.

Regulador

- ► Asumamos que la fibra $X_{\mathbb{C}}$ es lisa.
- ► Construcción de Kerr-Lewis-Müller-Stach ⇒

$$Reg: R\Gamma(X_{\acute{e}t}, \mathbb{R}^c(n)) \to RHom(R\Gamma_c(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n)), \mathbb{R}[1]).$$

- ▶ * La llegada no es la (co)homología de Deligne-Beilinson, sino simplemente $H_c^i(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))^{\vee}$, porque n < 0.
- ► Conjetura $\mathbf{B}(X, n)$ (Beilinson):

$$Reg^{\vee}: R\Gamma_c(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))[-1] \to R\mathrm{Hom}(R\Gamma(X_{\acute{e}t}, \mathbb{Z}^c(n)), \mathbb{R})$$
 es un cuasi-isomorfismo.

Conjetura del orden de anulación

▶ **VO**(X, n): asumiendo **L**^c(X, n),

$$\operatorname{ord}_{s=n} \zeta(X,s) = \sum_{i \in \mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(n)).$$
 (*)

ightharpoonup Asumiendo **B**(X, n),

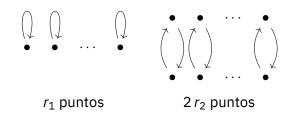
$$\operatorname{ord}_{s=n} \zeta(X,s) = \sum_{i \in \mathbb{Z}} (-1)^i \dim_{\mathbb{R}} H^i_c(X(\mathbb{C}),\mathbb{R}(n))^{G_{\mathbb{R}}}$$
 (**)

$$=\sum_{i\in\mathbb{Z}}(-1)^{i+1}\operatorname{rk}_{\mathbb{Z}}H^{i}(X_{\acute{e}t},\mathbb{Z}^{c}(n)). \tag{***}$$

- ightharpoonup (**) concuerda con la ecuación funcional (conjetural). Para n < 0 polos y ceros vienen de los Γ-factores.
- ► (***) concuerda con una conjetura de Soulé (1984).

Ejemplo de juguete

▶ $X = \operatorname{Spec} \mathcal{O}_F$. Espacio $X(\mathbb{C})$ con $G_{\mathbb{R}}$ -acción:



► Complejo $R\Gamma_c(X(\mathbb{C}), \mathbb{R}(n))$:

$$\mathbb{R}(n)^{\oplus r_1} \oplus (\mathbb{R}(n) \oplus \mathbb{R}(n))^{r_2},$$

 $G_{\mathbb{R}}$ -acción por $z\mapsto \overline{z}$ vs. $(z,w)\mapsto (\overline{w},\overline{z})$.

Determinantes de complejos

- Para módulos proyectivos finitamente generados: $\det_R P := \bigwedge^{\operatorname{rk} P} P$ (invertible = proyectivo de rk 1).
- ► Funtor

$$\begin{pmatrix} \text{m\'odulos proyectivos f.g.,} \\ \text{isomorfismos} \end{pmatrix} \rightsquigarrow \begin{pmatrix} \text{m\'odulos invertibles,} \\ \text{isomorfismos} \end{pmatrix}.$$

► Knudsen, Mumford, 1976: extensión

$$\left(\begin{array}{c} \text{complejos perfectos}, \\ \text{cuasi-isomorfismos} \end{array} \right) \rightsquigarrow \left(\begin{array}{c} \text{m\'odulos invertibles}, \\ \text{isomorfismos} \end{array} \right).$$

- $ightharpoonup \det_R A^{ullet} \cong \bigotimes_{i \in \mathbb{Z}} (\det_R H^i(A^{ullet}))^{(-1)^i}, \det_R 0 \cong R.$
- ► Compatibilidad con cambio de base.

Morfismo de trivialización

ightharpoonup Cuasi-isomorfismo de complejos, asumiendo $\mathbf{B}(X,n)$:

$$\begin{array}{c} R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),\mathbb{R}(n))[-2] \\ \oplus \\ R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),\mathbb{R}(n))[-1] \\ \cong \Big | Reg^{\vee}[-1]\oplus id \\ \\ RHom(R\Gamma(X_{\acute{e}t},\mathbb{Z}^{c}(n)),\mathbb{R})[-1] \\ \oplus \\ R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),\mathbb{R}(n))[-1] \end{array} \xrightarrow{\overset{\text{escisión}}{\cong}} R\Gamma_{\textit{W,c}}(X,\mathbb{Z}(n)) \otimes \mathbb{R}$$

▶ Isomorfismo de determinantes:

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} \mathsf{det}_{\mathbb{R}} \Big(R\Gamma_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \Big) \cong \Big(\mathsf{det}_{\mathbb{Z}} \, R\Gamma_{W,c}(X,\mathbb{Z}(n)) \Big) \otimes \mathbb{R}.$$

Conjetura del valor especial

Definimos

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\mathbb{Z}\text{-m\'odulo}\ de\ rk\ 1}) \otimes \mathbb{R}.$$

- Asumamos
 - ▶ $\mathbf{L}^{c}(X_{\acute{e}t}, n)$: generación finita de $H^{i}(X_{\acute{e}t}, \mathbb{Z}^{c}(n))$,
 - ▶ fibra $X_{\mathbb{C}}$ lisa,
 - ▶ $\mathbf{B}(X, n)$: regulador,
 - ightharpoonup prolongación meromorfa alrededor de s=n<0.
- ▶ $\mathbf{C}(X, n)$: el valor especial es s = n se determina salvo signo por

$$\lambda(\zeta^*(X,n)^{-1})\cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n)).$$

Caso de variedades sobre cuerpos finitos

▶ $\mathbf{C}(X, n)$ es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

▶ Ejemplo singular: cúbica nodal $X = \mathbb{P}^1_{\mathbb{F}_q}/(0 \sim 1)$.

$$H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n)) = \mathbb{Z}/(q^{1-n}-1),$$

 $H^{0,1}(X_{\acute{e}t}, \mathbb{Z}^c(n)) = \mathbb{Z}/(q^{-n}-1).$

$$\zeta(X,s)=\frac{1}{1-a^{1-s}}.$$

- ▶ $\mathbf{C}(X, n)$ se cumple incondicionalmente, asumiendo $\mathbf{L}^c(X_{\acute{e}t}, n)$, si X/\mathbb{F}_q es lisa y proyectiva.
- ▶ Se cumple para cualquier X, asumiendo resolución de singularidades sobre \mathbb{F}_a (!!)

Compatibilidades

▶ Uniones disjuntas: si $X = \coprod_{1 < i < r} X_i$, entonces

$$\zeta(X,s) = \prod_{1 \le i \le r} \zeta(X_i,s).$$

► De acuerdo con esto.

$$VO(X, n) \iff VO(X_i, n)$$
 para todo i , $C(X, n) \iff C(X_i, n)$ para todo i .

▶ **Descomposiciones cerrado-abiertas**: para $Z \hookrightarrow X \hookleftarrow U$,

$$\zeta(X,s) = \zeta(Z,s) \cdot \zeta(U,s).$$

- ▶ Dos de las tres conjeturas VO(X, n), VO(Z, n), VO(U, n) (resp. C(X, n), C(Z, n), C(U, n)) implican la tercera.
- ▶ Fibrados afines: $\zeta(\mathbb{A}_X^r, s) = \zeta(X, s r)$.
- ▶ $VO(\mathbb{A}_X^r, n) \iff VO(X, n-r), C(\mathbb{A}_X^r, n) \iff C(X, n-r).$

Aplicación: resultados nuevos incondicionales

E Esquema **celular** $X \rightarrow B$: admite filtración por cerrados

$$X=Z_N\supseteq Z_{N-1}\supseteq\cdots\supseteq Z_0\supseteq Z_{-1}=\emptyset,$$

donde
$$Z_i \setminus Z_{i-1} \cong \coprod_j \mathbb{A}_{\mathcal{B}}^{r_{i_j}}$$

- Teorema (B.): Sea B un esquema aritmético 1-dimensional. Asumamos que para todo punto genérico η ∈ B se cumple uno de los dos:
 - a) char $\kappa(\eta) = p > 0$;
 - b) char $\kappa(\eta) = 0$ y $\kappa(\eta)/\mathbb{Q}$ es un cuerpo de números abeliano.

Entonces, **VO**(X, n) y **C**(X, n) se cumplen para todo n < 0 y todo esquema aritmético *B*-celular *X* con la fibra $X_{\mathbb{C}}$ lisa.

▶ Idea: $\mathbf{C}(X, n)$ se conoce para curvas y cuerpos de números abelianos F/\mathbb{Q} (¡via TNC!). Proceder por inducción usando las compatibilidades.

Algunas preguntas para el futuro

- ▶ El regulador de Kerr–Lewis–Müller-Stach está definido para la fibra $X_{\mathbb{C}}$ lisa. ¿Cómo extenderlo al caso singular y conectar a esta maquinaria aritmética?
- Cuando la comparación tiene sentido, C(X, n) es equivalente a la TNC. ¿Cómo formular un análogo equivariante compatible con la ETNC?

¡Gracias por su atención!