Álgebra II. Hoja de ejercicios 7: Aritmética II Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Sea $p = 2, 3, 5, 7, \ldots$ un número primo $y k = 1, 2, 3, 4, \ldots$ Calcule que

$$v_p\left(\binom{p^k}{n}\right) = k - v_p(n)$$
 para todo $n = 1, 2, \dots, p^k$.

Indicación: calcule las valuaciones p-ádicas de ambos lados de la identidad

$$n! \binom{p^k}{n} = p^k (p^k - 1) (p^k - 2) \cdots (p^k - n + 1).$$

Note que $v_p(p^k - a) = v_p(a)$ para todo $a = 1, 2, ..., p^k - 1$

Ejercicio 2 (Fórmula de Legendre). Demuestre que para todo primo p y todo número natural n se tiene

$$v_p(n!) = \sum_{i>1} \lfloor n/p^i \rfloor.$$

En particular, calcule $v_2(100!)$.

Ejercicio 3 (Normas p-ádicas). Sea R un dominio de factorización única $y p \in R$ un elemento primo. Fijemos un número real $0 < \rho < 1$ y pongamos para todo $x \in R$

$$|x|_p := \rho^{v_p(x)}.$$

Demuestre que $|\cdot|_p$ cumple las siguientes propiedades.

- *N1*) $|x|_p = 0$ *si y solo si* x = 0.
- *N2*) $|xy|_p = |x|_p \cdot |y|_p$.
- N3) $|x+y|_p \le \max\{|x|_p, |y|_p\}$, y se cumple la igualdad si $|x|_p \ne |y|_p$.

Ejercicio 4. Compile una lista de los polinomios cuadráticos irreducibles en $\mathbb{F}_3[X]$.

Ejercicio 5. Sean k un cuerpo y $f \in k[X]$ un polinomio de grado 2 o 3. Demuestre que f es irreducible en k[X] si y solo si f no tiene raíces en k.

Ejercicio 6. Consideremos el polinomio $f := X^3 + 2X + 1 \in \mathbb{Z}[X]$.

- 1) Demuestre que $\overline{f} \in \mathbb{F}_2[X]$ es reducible.
- 2) Demuestre que $\overline{f} \in \mathbb{F}_3[X]$ es irreducible. Indicación: use el ejercicio anterior.
- 3) Demuestre que f es irreducible en $\mathbb{Z}[X]$.