Álgebra I. Hoja de ejercicios 14: Subgrupos normales y grupos cociente Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

El grupo alternante

Ejercicio 1. Demuestre que $Z(A_4) = \{id\}.$

Ejercicio 2. Consideremos el grupo alternante A_n para $n \ge 3$.

- a) Demuestre que el producto de dos diferentes transposiciones en S_n es un 3-ciclo o un producto de dos 3-ciclos. Deduzca que todos los 3-ciclos generan A_n .
- b) Demuestre que todo 3-ciclo puede ser expresado como un producto de 3-ciclos de la forma $(1 \ i \ j)$. Deduzca que los 3-ciclos de esta forma generan A_n .
- c) Demuestre que los 3-ciclos de la forma (1 2 i) generan A_n . Indicación: escriba (1 i j) en términos de estos 3-ciclos.
- d) Demuestre que los 3-ciclos de la forma $(i \ i+1 \ i+2)$ generan A_n . Indicación: demuestre primero la identidad

$$(1\ 2\ i) = (1\ 2\ i-2)(1\ 2\ i-1)(i-2\ i-1\ i)(1\ 2\ i-2)(1\ 2\ i-1).$$

e) Demuestre que A_n puede ser generado por dos permutaciones:

(1 2 3) y
$$\begin{cases} (2 3 \cdots n), & \text{si } n \text{ es par;} \\ (1 2 3 \cdots n), & \text{si } n \text{ es impar.} \end{cases}$$

Indicación: use d).

Grupos cociente

Ejercicio 3. Demuestre que si $H \subset G$ es un subgrupo de índice |G:H| = 2, entonces H es normal.

Ejercicio 4. Demuestre que si G es un grupo cíclico y $H \subset G$ es un subgrupo, entonces el grupo cociente G/H es también cíclico.

Ejercicio 5 (Segundo teorema de isomorfía). Sean G un grupo, $H \subset G$ un subgrupo y $K \subset G$ un subgrupo normal.

- a) Demuestre que $HK := \{hk \mid h \in H, k \in K\}$ es un subgrupo de G y K es un subgrupo normal de HK.
- b) Demuestre que $H/(H \cap K) \cong HK/K$. Sugerencia: considere la aplicación $H \to HK/K$ definida por $h \mapsto hK$.

Ejercicio 6. Sea k un cuerpo. Demuestre que $GL_2(k)/k^* \cong SL_2(k)/\{\pm I\}$, donde $k^* \subset GL_2(k)$ denota el subgrupo de matrices diagonales invertibles.

Ejercicio 7 (Tercer teorema de isomorfía). Sea G un grupo. Sea K un subgrupo normal de G y sea N un subgrupo de K tal que N es normal en G. Demuestre que $(G/N)/(K/N) \cong G/K$. Sugerencia: considere la aplicación definida por $gN \mapsto gK$.

Ejercicio 8. Sean m y n dos enteros positivos tales que $n \mid m$, así que $m\mathbb{Z} \subset n\mathbb{Z}$. Demuestre que

 $(\mathbb{Z}/m\mathbb{Z})/(n\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}.$