Álgebra I. Hoja de ejercicios 9: Homomorfismos y anillos cociente (continuación) Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ideales en el anillo cociente

Ejercicio 1. Encuentre los ideales en el anillo cociente $\mathbb{Z}[i]/(10)$ y las inclusiones entre ellos.

Ejercicio 2 (Ideales maximales). Sean A un anillo conmutativo y $\mathfrak{m} \subsetneq A$ un ideal propio. Demuestre que las siguientes dos condiciones son equivalentes:

- 1) para cualquier otro ideal \mathfrak{a} tal que $\mathfrak{m} \subseteq \mathfrak{a} \subseteq A$ se tiene $\mathfrak{a} = \mathfrak{m}$ o $\mathfrak{a} = A$;
- 2) el cociente A/\mathfrak{m} es un cuerpo.

Operaciones con ideales

Ejercicio 3 (Suma de ideales). Sean A un anillo conmutativo y $\mathfrak{a}_1, \dots, \mathfrak{a}_n \subseteq A$ ideales. Demuestre que el ideal generado por los elementos de $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ coincide con el conjunto

$$\mathfrak{a}_1 + \cdots + \mathfrak{a}_n := \{x_1 + \cdots + x_n \mid x_i \in \mathfrak{a}_i\}.$$

Ejercicio 4 (Producto de ideales). Sean A un anillo conmutativo y $\mathfrak{a}_1, \dots, \mathfrak{a}_n \subseteq A$ ideales. Demuestre que el ideal generado por los productos $x_1 \cdots x_n$ donde $x_i \in \mathfrak{a}_i$ coincide con el conjunto

$$\mathfrak{a}_1 \cdots \mathfrak{a}_n := \{ \text{sumas finitas } \sum_i x_{i_1} \cdots x_{i_n} \mid x_{i_k} \in \mathfrak{a}_k \}.$$

Ejercicio 5. Demuestre que $\mathfrak{a}_1 \cdots \mathfrak{a}_n \subseteq \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$.

Ejercicio 6. Demuestre que para los ideales principales se tiene para cualesquiera $x_1, \ldots, x_n \in A$

$$(x_1) + \cdots + (x_n) = (x_1, \dots, x_n),$$

 $(x_1) \cdots (x_n) = (x_1 \cdots x_n).$

Ejercicio 7. Sean *A* un anillo conmutativo y $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \subseteq A$ ideales. Demuestre que el producto de ideales es distributivo respecto a la suma:

$$(a + b)c = ac + bc$$
.

Ejercicio 8. Demuestre que si $\mathfrak{a} = (x_1, ..., x_m)$ y $\mathfrak{b} = (y_1, ..., y_n)$, entonces

$$\mathfrak{ab} = (x_i y_j \mid i = 1, ..., m, j = 1, ..., n).$$

Teorema chino del resto

Ejercicio 9. Demuestre que el anillo cociente

$$\mathbb{F}_3[X]/(X^3+X^2+X+1)$$

es isomorfo al producto $\mathbb{F}_9 \times \mathbb{F}_3$, donde \mathbb{F}_9 es un cuerpo de 9 elementos y \mathbb{F}_3 es un cuerpo de 3 elementos.

Ejercicio 10. Sea p un primo impar. Demuestre que el anillo cociente $\mathbb{F}_p[X]/(X^2+1) \cong \mathbb{Z}[i]/(p)$ es isomorfo a

- a) un cuerpo de p^2 elementos, o
- b) el producto de cuerpos $\mathbb{F}_n \times \mathbb{F}_n$.

¿Para cuáles primos p ocurre a) y para cuáles ocurre b)? ¿Qué sucede si p = 2?