Álgebra computacional. Tarea 2. Fecha límite: 11/04/2019 Universidad de El Salvador, ciclo impar 2019

Fijemos un orden monomial sobre $k[x_1,...,x_n]$.

Ejercicio 1. Sea $I \subseteq k[x_1,...,x_n]$ un ideal. Demuestre que para cualquier polinomio $f \in k[x_1,...,x_n]$ existe único $r \in k[x_1,...,x_n]$ con las siguientes propiedades:

- 1) los términos que aparecen en r no son divisibles por ningún elemento de LT(I);
- 2) f = g + r para algún $g \in I$.

Ejercicio 2. Para un ideal $I \subseteq k[x_1,...,x_n]$, sea $\{g_1,...,g_s\}$ un conjunto tal que $I = (g_1,...,g_s)$ y para todo $f \in I$ el resto de división de f por $g_1,...,g_s$ es nulo. Demuestre que $\{g_1,...,g_s\}$ es una base de Gröbner para I.

Ejercicio 3. Sean $\{g_1, ..., g_s\}$ y $\{g'_1, ..., g'_t\}$ dos bases de Gröbner para un ideal $I \subseteq k[x_1, ..., x_n]$. Demuestre que para cualquier polinomio $f \in k[x_1, ..., x_n]$ el resto de la división de f por $g_1, ..., g_s$ y por $g'_1, ..., g'_t$ coinciden.

Ejercicio 4.

1) Demuestre que

$$\operatorname{multideg}(S(f,g)) < \gamma$$
,

donde

$$x^{\gamma} = \text{mcm}(LM(f), LM(g)).$$

2) Encuentre un par de polinomios f,g tales que S(f,g) es diferente respecto a diferentes órdenes monomiales.

Ejercicio 5. Consideremos el anillo k[x, y, z].

1) Para

$$g_1 := z^2 - x$$
, $g_2 := z^3 - y$,

usando el criterio de Buchberger, determine respecto a cuáles órdenes monomiales entre lex, grlex y grevlex los polinomios g_1 y g_2 forman una base de Gröbner.

2) La misma pregunta para

$$g_1 := z^2 - x$$
, $g_2 := xz - y$, $g_3 := x^2 - yz$.

En los siguientes ejercicios se puede/se debe usar la computadora.

Ejercicio 6. Analice todos los pasos del algoritmo de Buchberger y el algoritmo de reducción para calcular la base de Gröbner reducida de $I = (f_1, f_2)$, donde

$$f_1 := x^2 + y$$
, $f_2 := x^3 + 2x^2y + y^2 + 3$,

respecto al orden lexicográfico y graduado lexicográfico.

Ejercicio 7. Use las bases de Gröbner para determinar si

- 1) $xy^3 z^2 + y^5 z^3 \in (-x^3 + y, x^2y z);$
- 2) $x^3z 2y^2 \in (xz y, xy + 2z^2, y z)$.

Ejercicio 8. Para la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x, y) := (x^2 + y^2 - 4)(x^2 + y^2 - 1) + (x - 3/2)^2 + (y - 3/2)^2$$

determine sus puntos críticos usando las bases de Gröbner; es decir, los puntos donde

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0.$$

Sugerencia: para las derivadas en Macaulay2, consulte la documentación sobre la función diff.

Ejercicio 9.

1) Calcule la base de Gröbner reducida para $I := (f_1, f_2, f_3) \subset k[x, y, z]$, donde

$$f_1 := x + 2y + z - 1$$
, $f_2 := 2x - y + z = 0$, $f_3 := x + 2y - z - 2$.

2) En general, sean $f_1, \dots, f_s \in k[x_1, \dots, x_n]$ polinomios lineales; es decir, polinomios de la forma

$$a_1x_1 + \cdots + a_nx_n + c$$
, $a_1, \ldots, a_n, c \in k$.

Explique por qué el cálculo de la base de Gröbner reducida para $I = (f_1, ..., f_s)$ corresponde al método de Gauss para resolver el sistema de ecuaciones

$$f_1(x) = \cdots = f_s(x) = 0.$$

Ejercicio 10. Usando nuestro código para el algoritmo de Buchberger, implemente en Macaulay2 las siguientes funciones.

- Una función que para f y $f_1,...,f_s$ determina si $f \in (f_1,...,f_s)$.
- Una función que para f y $f_1, ..., f_s$ determina si $f \in \sqrt{(f_1, ..., f_s)}$.
- Una función que para $f_1, ..., f_s, g_1, ..., g_t$ determina si $(f_1, ..., f_s) \subseteq (g_1, ..., g_t)$.
- Una función que para $f_1,...,f_s,g_1,...,g_t$ determina si $(f_1,...,f_s)=(g_1,...,g_t)$.
- Una función que para $f_1,...,f_s$ determina si el ideal $(f_1,...,f_s)$ es propio.